

LOCKHEED

July 31, 1995

Ms. Joan Kessner Bechtel Hanford, Inc. 345 Hills P.O. Box 969 Richland, WA 99352

RE:

Log-in No.:

Quotation No.:

SAF:

Document File No.:

BHC Document File No.:

SDG No.:

0629596

242

LK4838

The attached data report contains the analytical results of samples that were submitted to Lockheed Analytical Services on 29 June 1995.

The temperature of the cooler upon receipt was 4°C. Sample containers received agree with the chain-of-custody documentation. Sample containers were received intact. Samples were received in time to meet the analytical holding time requirements.

The case narratives included in the following attachments provide a detailed description of all events that occurred during sample preparation, analysis, and data review specific to the samples and analytical methods requested.

A list of data qualifiers, chain-of-custody forms, sample receiving checklist, and log-in report are also enclosed representing the samples received within this group.

If you have any questions concerning the analysis or the data please call Kathleen Hall at (509) 943-4423.

Release of this data report has been authorized by the Laboratory Director or the Director's designee as evidenced by the following signature.

Log-in No.: L4838

Quotation No.: Q400000-B

SAF: B95-067

Document File No.: 0520596/0525596

BHC Document File No.:242

SDG No.: LK4838

" I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manger or a designee, as verified by the following signature."

Sincerely,

Kathleen M. Hall

Client Services Representative

cc: Client Services

Document Control

Log-in No.: L4838

Quotation No.: Q400000-B

SAF: B95-067

Document File No.: 0520596/0525596

BHC Document File No.:242

SDG No.: LK4838

CASE NARRATIVE INORGANIC NON METALS ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument tune (ICP/MS only), initial and continuing calibration verification, initial and continuing calibration blanks, method blank(s), laboratory control sample(s), ICP interference check samples (ICP only), serial dilutions, analytical (post-digestion) spike samples, matrix spike (predigestion) sample(s), duplicate sample(s).

Preparation and Analysis Requirements

 One water sample was received for LK4838 and analyzed in batch 629 bh for selected analytes as requested on the chain of custody. Quality control analysis was performed on the following sample:

Client ID	LAL#		Method
BOG079	L4838-5	DUP, MS	180.1 Turbidity
BOG079	L4838-3	DUP, MS	300.0 Chloride, Fluoride, Nitrate-Nitrogen, Nitrite-Nitrogen, Orthophosphate and Sulfate
BOG079	L4838-7	DUP, MS	350.1 Ammonia
BOG079	L4838-4	DUP, MS	353.2 Nitrate-Nitrite-Nitrogen
BOG079	L4838-6	DUP, MS	9030 Sulfide

Holding Time Requirements

All samples were analyzed within the method-specific holding times.

Method Blanks

 The concentration levels of all the requested analytes in the method blank were below the reporting detection limits.

Internal Quality Control

All Internal Quality Control were within acceptance limits.

Kay McCann Prepared By July 10, 1995 Date

Log-in No.: L4838

Quotation No.: Q400000-B

SAF: B95-067

Document File No.: 0520596/0525596

BHC Document File No.:242

SDG No.: LK4838

CASE NARRATIVE INORGANIC METALS ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument tune (ICP/MS only), initial and continuing calibration verification, initial and continuing calibration blanks, method blank(s), laboratory control sample(s), ICP interference check samples (ICP only), serial dilutions, analytical (post-digestion) spike samples, matrix spike (predigestion) sample(s), duplicate sample(s).

Preparation and Analysis Requirements

- One water sample was received in good condition on June 29, 1995 and logged in as L4838.
- The samples were prepared as LAS Batch 629BHT and analyzed for selected analytes as requested on the chain of custody. Sample BOG079 (L4838-2) was used for matrix spike and duplicate and serial dilution. All data flags due to the performance of the above-mentioned QC are associated with every sample digested with this batch.

Holding Time Requirements

All samples were analyzed within the method-specific holding times.

Internal Quality Control

All internal quality control were within acceptance limits.

Hongsheng LI	7/31/95
Prepared By	Date

Log-in No.: L4838

Quotation No.: Q400000-B

SAF: B95-067

Document File No.: 0520596/0525596

BHC Document File No.:242

SDG No.: LK4838

CASE NARRATIVE INORGANIC METALS ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument tune (ICP/MS only), initial and continuing calibration verification, initial and continuing calibration blanks, method blank(s), laboratory control sample(s), ICP interference check samples (ICP only), serial dilutions, analytical (post-digestion) spike samples, matrix spike (predigestion) sample(s), duplicate sample(s).

Preparation and Analysis Requirements

- One water sample was received in good condition on June 29, 1995 and logged in as L4838.
- The samples were prepared as LAS Batch 629BHD and analyzed for selected analytes as requested on the chain of custody. Sample BOG080 (L4838-22) was used for matrix spike and duplicate and serial dilution. All data flags due to the performance of the above-mentioned QC are associated with every sample digested with this batch.

Holding Time Requirements

All samples were analyzed within the method-specific holding times.

Internal Quality Control

All internal quality control were within acceptance limits.

Prepared By	Date	-
Hongsheng LI	7/31/95	

Log-in No.: L4838

Quotation No.: Q400000-B.

SAF: B95-067

Document File No.: 0520596/0525596

BHC Document File No.:242

SDG No.: LK4838

CASE NARRATIVE RADIOCHEMICAL ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument calibration, initial and continuing calibration verification, quench monitoring standards, instrument background analysis, method blanks, yield tracer, laboratory control samples, matrix spike samples, duplicate samples.

Holding Time Requirements

All holding times were met.

Chemical recoveries and MDAs can be found on the preparation and calculation spreadsheets, respectively, of the attached raw data for each method.

Analytical Method Gross Alpha Beta

The gross alpha beta analysis was performed using Standard Operating Procedure (SOP), LAL-91-SOP-0060. All samples were analyzed in workgroup #24940. No problems were encountered during preparation or analysis. All QC criteria were met and no reanalyses were performed.

Analytical Method Strontium-90

The strontium-90 analysis was performed using SOP, LAL-91-SOP-0196. All samples were analyzed in workgroup #24941. No problems were encountered during preparation or analysis. All QC criteria were met and no reanalyses were performed.

Analytical Method Technetium-99

The technetium-99 analysis was performed using SOP, LAL-91-SOP-0169. All samples were analyzed in workgroup #24944. No problems were encountered during preparation or analysis. All QC criteria were met and no reanalyses were performed, with the following exception: The low LCS tracer chemical yield was elevating the LCS recovery out of limits; therefore, the average batch chemical yield was used, preventing an out-of-limits LCS.

Analytical Method Tritium

The tritium analysis was performed using SOP, LAL-91-SOP-0066. All samples were analyzed in workgroup #24943. No problems were encountered during preparation or analysis. All QC criteria were met and no reanalyses were performed.

9613428.146

Lockheed Analytical Services

Log-in No.: L4838

Quotation No.: Q400000-B

SAF: B95-067

Document File No.: 0520596/0525596

BHC Document File No.:242

SDG No.: LK4838

Analytical Method Uranium Isotopic

The uranium isotopic analysis was performed using SOP, LAL-91-SOP-0108. All samples were analyzed in workgroup #24942. No problems were encountered during preparation or analysis. All QC criteria were met and no reanalyses were performed.

Yvonne M. Jacoby Prepared By <u>July 26, 1995</u> Date

9613428.1462 Lockheed Analytical Services DATA QUALIFIERS FOR INORGANIC ANALYSES

[Revised 08/28/92]

	For Use on the Analytical Data Reporting Forms
В	For CLP Analyses Only — Reported value is less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL).
С	For Routine, Non-CLP Analyses Only Any constituent that was also detected in the associated blank whose concentration was greater than the reporting detection limit (RDL).
D	Presence of high levels of interfering constituents required dilution of sample which increased the RDL by the dilution factor.
E	Estimated value due to presence of interference.
Н	Sample analysis performed outside of method-or client-specified maximum holding time requirement.
M	For CLP Analyses Only - Duplicate injection precision criterion was not met.
N	Matrix spike recovery exceeded acceptance limits.
S	Reported value was determined from the method of standard addition.
U	For CLP Reporting Only Constituent was analyzed for but not detected (sample quantitation must be corrected for dilution and percent moisture).
W	For AAS Only - Post-digestion spike for Furnace AAS did not meet acceptance criteria and sample absorbance is less than 50% of spike absorbance.
X, Y, or Z	Analyst-defined qualifier.
*	Relative percent difference (RPD) for duplicate analysis exceeded acceptance limits.
+	Correlation coefficient (r) for the MSA is less than 0.995.
	For Use on the QC Data Reporting Forms
a¹	The spike recovery and/or RPD for matrix spike and matrix spike duplicates cannot be evaluated due to insufficient spiking level compared to the elevated sample analyte concentration.
b¹	The RPD cannot be computed because the sample and/or duplicate concentration was below the RDL.

¹ Used as footnote designations on the QC summary form.

9613428. 1463 Lockheed Analytical Services DATA QUALIFIERS FOR RADIOCHEMICAL ANALYSES

[Revised 08/28/92]

	For Use on the Analytical Data Reporting Forms
В	Any constituent that was also detected in the associated blank whose concentration was greater than the reporting detection limit (RDL) and/or minimum detectable activity (MDA).
С	Presence of high TDS in sample required reduction of sample size which increased the MDA.
D	Constituent detected in the diluted sample.
E	Constituent concentration exceeded the calibration or attenuation curve range.
F	For Alpha Spectrometry Only FWHM exceeded acceptance limits.
н	Sample analysis performed outside of method-specified maximum holding time requirement.
Y	Chemical yield exceeded acceptance limits.
	For Use on the QC Data Reporting Forms
*	QC data (i.e., percent recovery data for laboratory control standard and matrix spike; and RPD for replicate analyses) exceeded acceptance limits.
a¹	The spike recovery and/or RPD for matrix spike and duplicates cannot be evaluated due to insufficient spiking level compared to the elevated sample analyte concentration.
b¹	The RPD cannot be computed because the sample and/or duplicate concentration was below the MDA.

¹ Used as foot note designations on the QC summary form.

7613479 1464 Sample Disposition Record

Control #: 95-0040 Revision #:

Date Initiated: 07/05/95

Section 1 - BACKGROUND

SAF #: B95-067 OU: 100-HR-3

Project ID: 100-HR-3 LFI

Task ID: 6

Sampling Event: 100-HR-3 Groundwater Sampling-Phase 1

Laboratory: Quanterra/Lockheed Project Coordinator: R. C. SMith Task Manager: R. E. Peterson

Section 2 - SAMPLE INFORMATION

Number of Samples: 4 - Qunaterra; 2 - Lockheed

ID Numbers: O - B0G041, B0G042, B0G077, B0G078; L - B0G079, B0G080

Matrix: Water

Collection Date: 06/27/95

Section 3 - ISSUE

Class: Validation Direction

NCR Number: N/A

Type: Temperature Excursion

Description: Samples were stored for twelve hours in a refrigerator with temperatures of 7-8 degrees

Celcius.

N/A

NCR Validation (Print/Sign)

Date

Section 4 - DISPOSITION

Type: Use As Is

Description: With concurrence from R. E. Peterson, task lead, proceed with analyses and document

excursion with this SDR.

R. C. Smith/

Mark had Project Coordinator (Print/Sign)

R. E. Peterson

Task Manager (Print/Sign)

N/A____

QA (Print/Sign)

Date

Section 5 - INSPECTION (Issue Class: Nonconformance Only)

Inspection Number:

Inspection Results:

014

Inspector (Print/Sign)

Date

[95] From: Kenneth F Trapp at "WHC279 6/28/95 4:07PM (1762 bytes: 1 ln) To: Robert C (Clay) Smith at "WHC321 cc: Kenneth F Trapp, David A St John Subject: Samples Out of Range in Temperature. ----- Message Contents -Text item 1: Text 1 Dear Clay, All the samples stored in Refrigerator 3 at 4701-C were exposed to out of range temperatures for a 12 hour period, from 2000 on June 27 to 0800 on June 28. The temperature ranged between 7C to 8C. Here is a list of the affected samples by SAF: B95-067 (100-HR-3 Groundwater Sampling, Phase 1) B0G041 Quanterra **B0G042 BOG077 BOG078** B0G079 Lockheed B0G080 Only the analysis for Anions, NO2-NO3, Turbidity, Sulfide, and Ammonia are temperature dependent. B95-077 (100-HR-3 Groundwater Sampling - TPH) B0G790 B0G791 B0G792 B0G793 TPH is temperature dependent. Shipped to Quanterra. B95-078 (116-B-5 Crib) 116-B5A-10 116-B5A-12.5 116-B5A-14.5 116-B5B-10 116-B5B-12.5 116-B5B-14.5 116-B5C-6 116-B5D-10 116-B5D-12.5 116-B5D-15 116-B5H-10 116-B5H-12.5 116-B5H-15 .116-B5G-10

116-B5G-12.5 116-B5G-15

LOCKHEED ANALYTICAL SERVICES LOGIN CHAIN OF CUSTODY REPORT (ln01) Jun 29 1995, 01:57 pm

Login Number: L4838
Account: 596 Bechtel Hanford, Inc. * Richland, WA
Project: BECHTEL-HANFORD Bechtel Hanford Project

Laboratory Sample Number	Client Sample Number	Collect Date	Receive Date	Due PR Date
L4838-1 temp 4; SAF# B95-067 Location: RFG01-07B		27-JUN-95	. 29-JUN-95	03-AUG-95
Water 1 S SCRE	ENING	Hold:24-DEC-95		
L4838-2 temp 4; SAF# B95-067 Location: RFG01-07B	B0G079	27-JUN-95	29-JUN-95	03-AUG- 95
	ICP METALS	Hold:24-DEC-95		•
L4838-3 temp 4; SAF# B95-067 Location: RFG01-07B	B0G079	27-JUN-95	29-JUN-95	. 03-AUG-95
Water 1 S 300. Water 1 S 300.	O CHLORIDE O FLUORIDE O NITRATE	Hold:25-JUL-95 Hold:25-JUL-95 Hold:29-JUN-95		
Water 1 S 300. Water 1 S 300.	O NITRITE O PHOSPHATE O SULFATE	Hold:29-JUN-95 Hold:29-JUN-95 Hold:25-JUL-95		. '
L4838-4 temp 4; SAF# B95-067 Location: RFG01-07B			29-JUN-95	03-AUG- 95
L4838-5 temp 4; SAF# B95-067 Location: RFG01-07B		27-JUN-95	29-JUN-95	03-AUG-95
	1 TURBIDITY	Hold:29-JUN-95		
L4838-6 temp 4; SAF# B95-067 Location: RFG01-07B	B0G079	27-JUN- 95	29-JUN-95	03-AUG-95
	SULFIDE	Hold:04-JUL-95		•
L4838-7 temp 4; SAF# B95-067		27-JUN-95	29 - JUN-95	03-AUG-95
Location: RFG01-07B Water 1 S 350.	1 NH3/N	Hold:25-JUL-95		
L4838-8 temp 4; SAF# B95-067 Location: 157	B0G079	27-JUN-95	29-JUN-95	03-AUG-95
	LP/BETA LAL-0060	Hold:24-DEC-95		

LOCKHEED ANALYTICAL SERVICES LOGIN CHAIN OF CUSTODY REPORT (ln01) Jun 29 1995, 01:57 pm

Login Number: L4838
Account: 596 Bechtel Hanford, Inc. * Richland, WA
Project: BECHTEL-HANFORD Bechtel Hanford Project

Laboratory Sample Number	Client Sample Number	· Collect Date		Due Date
	0 LAL-0196 OTOPIC LAL-0108			
L4838-9 temp 4; SAF# B95-067 Location: 157		27-JUN-95	. 29-JUN-95	03-AUG-95
L4838-10 temp 4; SAF# B95-067 Location: 157	B0G079	. 2.7. −JUN−9 5`	29-JUN-95	03-AUG-95
L4838-11 temp 4; SAF# B95-067 Location: 157		27-JUN-95	29-JUN-95	03-AUG-95
L4838-12 temp 4; SAF# B95-067 Location: 157	.B0G079	27-JUN-95	29-JUN-95	03-AUG-95
L4838-13 temp 4; SAF# B95-067 Location: 157	B0G079	27-JUN-95	29-JUN-95	03-AUG-95
L4838-14 temp 4; SAF# B95-067 Location: 157	B0G079	27-JUN-95	29-JUN-95	03-AUG-95
L4838-15 temp 4; SAF# B95-067 Location: 157	B0G079	27-JUN-95	29-JUN-95	03-AUG-95
L4838-16 temp 4; SAF# B95-067 Location: 157	B0G079	27-JUN-95	29-JUN-95	03-AUG-95
L4838-17 temp 4; SAF# B95-067 Location: 157	B0G079	27-JUN-95	29-JUN-95	03-AUG-95
Water 1 S TRIT	IUM(H3) LAL-0066 BOG079	•	29-JUN-95	03-AUG-95
temp 4; SAF# B95-067 Location: 157 Water 1 S TC-99	•	Hold:24-DEC-95		

9613428.1468

LOCKHEED ANALYTICAL SERVICES LOGIN CHAIN OF CUSTODY REPORT (ln01) Jun 29 1995, 01:57 pm

Login Number: L4838
Account: 596 Bechtel Hanford, Inc. * Richland, WA
Project: BECHTEL-HANFORD Bechtel Hanford Project

Laboratory Sample Number	Client Sample Number	Collect Date	Receive Date	Due PR Date
L4838-19 temp 4; SAF# B95-067 Location: 157	B0G079	27-JUN-95	2 9-JUN- 95	03-AUG-95
L4838-20 temp 4; SAF# B95-067 Location: 157	B0G079	27-JUN-95	29-JUN-95	03-AUG-9 5
L4838-21 temp 4; SAF# B95-067 Location: 157	B0G079	27 –JU N–95	29-JUN-95	03-AUG- 95
L4838-22 temp 4; SAF# B95-067 Location: RFG01-07B			29-JUN-95	∵; √ 0 3−AUG−9 5
Filt H20 15 S 6010	ICP METALS	Hold:24-DEC-95		
SAF# B95-067	REPORT TYPE	2 9- JUN-95	29-JUN-95	03−AUG −95
	- DISK DEL. G TYPE 4A RPT RPT TYPE 4F			

Page 3

Signature:

Date:

Radioactive Material Screening Worksheet

	Job Nar	ne	WHC-	06295-	L483	8												_
Sample	Solid or	Time	Size (g	or mi)	Co	ounts	CI	PM .		DPM			ity (uCi/gm	or ml)	Acti	vity (uCi/sar	nple)	RAD
Number	Liquid	(min)	Aliq	Smp	α	β	α	β	ď	ું ડે	3	α	β	α/β	α	β	α/β	YorN
L4838- 1	Liquid	5				113	0.8	22.6	1		-8	4.28E-08	LMDA	4.28E-08	8.56E-07	LMDA	8.56E-07	NO
	· -									L								<u> </u>
		· · · · ·																
																<u> </u>		in it
														·				
	L	<u> </u>	L															- Augus
<u>, </u>			<u> </u>															
						·												1
			<u> </u>						L	<u> </u>								
										<u> </u>		· · · ·	ļ					<u> </u>
			ļ						<u> </u>	<u> </u>				ļ	· · · · · · · · · · · · · · · · · · ·			
	 		ļ	ļ. <u>.</u>	L		<u> </u>		ļ	<u> </u>			ļ				ļ	
			ļ					<u> </u>		 			ļ		<u> </u>	!		
			ļ	ļ			 			├			 				· · · · · · · · · · · · · · · · · · ·	1
			<u> </u>	-				· .		├—			ļ	ļ		ļ		
								ļi.	<u> </u>	 			 	ļ		·		
			ļ	ļ		 	<u> </u>	ļ. <u> </u>		! —					<u> </u>		ļ	
			ļ	<u> </u>				ļ. <u>. </u>		 			ļ				· · · · · · · · · · · · · · · · · · ·	
	ļ		ļ					<u> </u>	-	 			 					
			 							-								-
				 	 					-								
	ļ			 	 		-			├			 -	 			·	
	L		<u></u>	<u> </u>	<u> </u>	<u> </u>		L	 	<u> </u>		4 005 00	0.005 . 00	4 205 00	0.505.03	0.005 . 00	0.505.05	
									<u>'</u>	otal	S ⊹	4.28E-08	10.00E + 00	4.28E-08	8.56E-07	0.00E + 00	8.56E-07	

 RDL (soil)
 Alpha
 Beta

 uCi/gm
 5.89E-05
 1.60E-04

 RDL (liquid)
 Alpha
 Beta

 uCi/gm
 5.89E-07
 1.60E-06

Analyst's Signature:

Review Signature:

1 O sum from

06294596

A - P ₁ ZZ o Round 9, Phase 1	CHAIN OF CUSTO Company Contact R. E. Peterson Sampling Location 100 H Field Logbook No. EFZ - /C Offsite Property No. W95-0-		APLE A	NALYSI	S REQU	Telephone (509) 372-9	0638	83	ata Turna	round Priority	7 76 20195			
•	R. E. Peterson Sampling Location 100 H Field Logbook No. Field Logbook No. Offsite Property No.	2 <i>18</i>		-	 -		1638		1	•				
•	Sampling Location 100 H Field Logbook No. Field Property No.	0/8°								- □ Priority ■ Normal				
ouna 9, Phase 1	Field Logbook No. EFZ - /C Offsite Property No.	218°			Sampling Location									
	Offsite Property No.	3/8	Field Logbook No.						B95-067 Method of Shipment					
							Federal Express Bill of Lading/Air Bill No. 290 4633.299							
	Preservation	HNO,	Cool 4°C	H₂SO₄	Cool 4°C	*1	H ₂ SO ₄	HNO,	Cool 4°C	HCI	Cool 4°C			
	Type of Container	G	G	P/G	P/G	P	P/G	P/G	G	P/G	P			
cial Handling and/or Storage			1	1	1	1	1	9	1	4	1			
d 6°C.	Volume	500mL	500mL	500mL	250mL	1L	1L	1L	500mL	1L	20mL			
SAMPLE ANALYSIS			Anions (IC) - F, Cl, SO ₄ , NO ₂ , NO ₃ , PO ₄	NO ₂ - NO ₃	Turbidity	Sulfide	Ammonia	Gross Alpha, Gross Beta, Sr-90, U-235/238	Tritium	Tc-99	Activity Scan			
Matrix* Date San	mpled Time Sampled	1271 411 62	11/6%,43	(1) 명 : 기기	1 19-11 19:		6,870 C	1,878.1	<u> </u>		ļ			
e 6.37	2.55 0937	Å	Y	γ.	F	Α,	4	k	X	ζ.	Ø			
	Sign/Print Names	<u> </u>			ONS					Matrix*				
e/Time 1140 Reco	eived By A. K. Traps C/20 Date/Tin	ne	Sample ana 180.1 is bei the 48-hour	lysis for phosing requested holding time	for informat will not be	ion only. The met.	ne ERC Cont	ractor acknow	wledges that	SE = Scd SO = Solic SL = Sluc W = Wa O = Oil A = Air	iment id dge ter			
		- 12 hours, between 7°C and 8°C, for these						T = Tiss W(= Win L = Liq V = Veg	Drum Liquids Tissue Wipe Liquid					
init	Title Smple C-			p (c).			4.20	1.45 /	0 900	X = Oth	er •			
A de le	ANALYSIS atrix* Date Sa 6.37 Crime 27.75 124 CK 77.1me 140 Reco	Sign/Print Names Sign/Print Names Sign/Print Names Time Received By Date/Time Received By Date/Time Received By Date/Time Received By Date/Time Title Title	Sign/Print Names Sign/Print Names Sign/Print Names Sign/Print Names Filme Received By Received By Date/Time Received By Date/Time Received By Date/Time Title Title Title	Sign/Print Names Special I *1 Znac+ *1	Sign/Print Names Special instruction of the sample of the sam	Sign/Print Names Special Instructions 1 Znac+NaOH Time Received By Date/Time Date/Time Date/Time Sign/Print Names Time Received By Date/Time Date/Time LHO Received By Date/Time The temperature Language Language The temperature Language Language Sommulation Sommulation No. No. Po. No. No	Sign/Print Names 1 ZnAc+NaOH Control Sample analysis for phosphate, nitrate, and nitrite Sam	Sign/Print Names Time Received By Date/Time Date/Time Received By Date/Time Date/Time	Sign/Print Names 1 Zade-NaOH Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nitrate, and nitrite by EPA 300.0; and turbing time will not be met. Somble Ansalysis for phosphate, nit	Sign/Print Names Sign/Print Name Sign/Print Name Sign/Print Name Sign/Print Name Sign/Print Name	Sign/Print Names Time Received By Date/Time The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants on the met. The temperature was out a range for more plants of more pl			

Bechtel Hanford, Inc	•	CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST											2
Collector	1 1	0	Company Contact					Telephone				☐ Priority ■ Normal	
K- (et	<u> </u>	K1220.	R. E. Peterson Sampling Location					(509) 372- SAF No.	9638				
Project Designation 100-HR-3 Groundwater Sampli	ng, Round 9, Pha	șe 1		B95-067					1				
Ice Chest No.			Field Logbook No. Offsite Property No.	< · /()/	 Х	Method of Shipment Federal Express							
Shipped To Lockheed	•		Offsite Property No. W95-0-(2204-3	9			Bill of Lading/Air Bill No. 290 - 4633 - 295					
Possible Sample Hazards/Rema	rks		Preservation	HNO ₃									
			Type of Container	G									
			No. of Container(s)	1				_					
Special Handling and/or Storag Maintain samplings between 2°			Volume	500mL							-		·@
SAM	PLE ANALYSIS			ICP Metals (Filtered)								. ,	
Sample No.	Matrix*	Date Sampled	Time Sampled	le wire in		ing a high				<u> </u>		<u> </u>	
B0G080	w	6.37.85	0 83)	7						<u> </u>			
CHAIN OF POSSESSION		Sign/Print N	lames		SPECIAL 1	NSTRUCTI	ONS	<u></u>	<u> </u>	_	<u> </u>	Matrix*	
Relinquished By AG-P-124 (ERC) Relinquished By Relinquished By Relinquished By Relinquished By	Date/Time 6-3-7-7 Date/Time 6-/24-/95 Date/Time Date/Time	Received By 129 . Whata Received By		ne ne	Refer to Ad 20045 The t Tempe 12 hou	iample rature	_		rsed t VC a	o an nd 8°C	of ray	S = Soil SE = Sediid SO = Solid SL = Studg W = Wate O = Oil A = Air DS = Drun DL = Drun T = Tisso WI = Wipp L = Liqu V = Vege X = Othe	e or Solids n Solids n Liquids uc id
LABORATORY Receive SECTION FINAL SAMPLE Disposa DISPOSITION	Aur	ull	Title Sample Care	Dis	sposed By				ر ،	Date/Time 24 · 45 Date/Time	1640)	

WELL LISTED IN THE 1995 100-HR-3 ROUND 9 SAMPLING

199-H3-1

199-H4-10

199-H4-13

199-H4-15A

199-H4-15CS

199-H4-16

199-H4-17

199-H4-45

199-H4-46

199-H4-47

199-H4-48

199-H4-49

199-H5-1A

199-H6-1

199-H4-3

199-H4-4

199-H4-5

199-H4-6

199-H4-11

199-H4-14

199-H3-2A

199-H3-2C

199-H4-12A

199-H4-12C

699-96-43

699-97-43

Restoration Contractor ERC Team

Job No. 22192
Written Response Required: NO
CCN: N/A

OU: 100-HR-3 TSD: N/A ERA: N/A

Subject Code: 5850

Interoffice Memorandum

TO:

W. S. Thompson

N3-06

DATE: June 13, 1995

COPIES:

R. L. Biggerstaff

H4-91

S. K. De Mers

Radiological Controls

N3-06/376-2764

SUBJECT: 1995 Round 9 sampling for 100-HR-3

There is no need to perform total activities prior to offsite shipment to NRC licensed labs of samples taken from the attached list of wells.

FROM:

All except one of the wells listed in the attachment were reviewed for radiological content based on the previous 4 years of sampling data. No well listed has a β activity in excess of 100,000 pCi/l (<.1 uCi/sample based on a 1 liter sample size) nor any α activity in excess of 10,000 pCi/l (<.01 uCi/l based on a 1 liter sample). All wells show activities < 2,000 pCi/gm (< 2 nCi/gm D.O.T. limit). The highest activity in recent samples is 773 pCi/l β and 50 pCi/l α .

The remaining wells are in locations that do not provide a credible path whereby they could become contaminated at the above listed levels.

Radiological monitoring during sampling will only be required if the wells are located in radiological areas or if the wells themselves are labeled with radiological stickers.

Monitoring requirements for down hole work such as pump removal will be determined based on the history of each well on a case by case basis.

skd

SAMPLE CHECK-IN LIST

Date/	Time Received: 6-2995/0900	SDG#: Wr								
Work	Order Number:	SAF #	: <u>(</u>	3 95	-01	<u>e?</u>				
Shipp	ing Container ID: Bonhad I Chain of	Custo	dy #_		14					
1.	Custody Seals on shipping container intact	?		Yes	14	No	[]			
2.	Custody Seals dated and signed?			Yes	M	No	[]			
3.	Sample temperature 4°C									
4.	Vermiculite/packing materials is			Wet	[]	Dry				
5.	Each sample is in a plastic bag?			Yes	$[\times]$	No	[]			
6.	Sample holding times exceeded?			Yes	[]	No	\square			
8.	tapehazard labels									
9. Notes	Is the information on the COC and Sample bo	ottles	in ag	jreemo	ent?					
						•				
Sample	e Custodian/Laboratory: My H. / MS	Da	ate: (-20	9-95					
	honed To: Kurkley Hall On 6-29-95		3y_ <i>A</i> .			iller				

025

LOCKHEED MARTIN

11029591

Sample Login Login Review Checklist

Lot Number <u>L4836</u>

The login review should be conducted by that person logging in the samples as well as a peer. Please use this checklist to ensure that such reviews occur in a uniform basis. Please sign and date below to verify that a login review has occurred. This checklist should be affixed to each login package prior to distribution.

For effective login review, at a minimum, five reports form the login process are required. These are the COC (or equivalent), the login COC report, the sample summary report, the sample receiving checklist, and the login quotation. Before beginning review, ensure that these five components are available. Jobs with single component samples, the sample summary report may be omitted.

SAMPLE SUMMARY REPORT	<u>YES</u>	<u>NO</u>	N/A	Comment
1. Are all sample ID's correct?	$\overline{\lambda}$			-
2. Are all samples present?	<u>κ</u>		_	
3. Are all matrices indicated correctly?	X	_	_	
4. Are all analyses on the COC logged in for the appropriate samples?	<u>k</u>		_	
5. Are all analyses logged in for the correct container?	X			
6. Are samples logged in according to LAS batching procedures?	<u>Χ</u>			
LOGIN CHAIN OF CUSTODY	<u>YES</u>	<u>NO</u>	N/A	Comment
1. Are the collect, receive, and due dates correct for every sample?	X			
2. Have all appropriate comments been indicated in the comment section?	_	_	<u>X</u>	
SAMPLE RECEIVING CHECKLIST	<u>YES</u>	<u>NO</u>	<u>N/A</u>	Comment
1. Are all discrepancies between the COC and the login noted (if applicable)?			<u>X</u>	
•				

Lockheed Analytical Services Sample Receiving Checklist

Client Name: Beship - Hanford	Job No.	LY478	Cooler ID:	
COOLER CONDITION UPON RECEIPT				
Temperature of cooler upon receipt:	4%			
temperature of temp. blank upon receipt:		·		
	Yes	No	Comments/Discrepancies	
custody seals intact	Y			
chain of custody present	-			
blue ice (or equiv.) present/frozen	Х			
rad survey completed	۶			
SAMPLE CONDITION UPON RECEIPT				· · · · · · · · · · · · · · · · · · ·
	Yos	No	Comments/Discrepancies	
all bottles labeled	Х			•
samples intact	×			1 11 A 44
proper container used for sample type	x			
sample volume sufficient for analysis	X			
proper pres. indicated on the COC	X			
VOA's contain headspace			M	
are samples bi-phasic (if so, indicate sample ID'S):			M	
MISCELLANEOUS ITEMS	Yes	No	Comments/Discrepancies	· · · · · · · · · · · · · · · · · · ·
samples with short holding times		- V	Command Discionation	
samples to subcontract		x		
ADDITIONAL COMMENTS/DISCREPANCIES				
			·	
				
All All		····		
	-69.75			
Sent to the client (date/initials):		++ Client's a	rignature upon receipt:	· · · · · · · · · · · · · · · · · · ·
	sky mnon onceint			
Notes: * = contact the appropriate CSR of any discrepancies immediate	all about teceths			······································
Notes: * = contact the appropriate CSR of any discrepancies immediate ** = picase review this information and return via factionille to the app ** ** ** ** ** ** ** ** **	**************************************	-8146		

9613428.1477

Lockheed Analytical Laboratory SAMPLE SUMMARY REPORT (su02) Bechtel Hanford, Inc. * Richland, WA

Client Sample Number	LAL Sample Number	SDG Number	Matrix	Method
				:
B0G079 —	L4838-1 L4838-2 L4838-3 L4838-3 L4838-3 L4838-3 L4838-3 L4838-4 L4838-5 L4838-5 L4838-6 L4838-7 L4838-8 L4838-8 L4838-8 L4838-8 L4838-17 L4838-18		Water	SCREENING 6010 ICP METALS 300.0 CHLORIDE- 300.0 FLUORIDE- 300.0 NITRATE - 300.0 NITRATE - 300.0 PHOSPHATE 300.0 SULFATE- 353.2 NITRATE - 180.1 TURBIDITY 9030 SULFIDE - 350.1 NH3/N - GR ALP/BETA LAL SR-90 LAL-0196- U-ISOTOPIC LAL- TRITIUM(H3) LAL TC-99 LAL-0169-
B0G080 -	L4838-22		Filt H20	6010 ICP METALS
REPORT TYPE —	L4838-23 L4838-23 L4838-23		Water Water Water	EDD - DISK DEL: INORG TYPE 4A R RAD RPT TYPE 4F

9613428.1478 LOCKHEED ANALYTICAL SERVICES

Sample Results

Client Sample ID: B0G079	Date Collected: 27-JUN-95
Matrix: Water	Date Received: 29-JUN-95
Percent Solids: N/A	

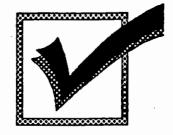
Constituent	Units	Method	Result	Project Reporting Limit	Data Qualifier(s)	Date Analyzed	LAS Batch ID	LAS Sample ID
Turbidity	NTU	180.1	0.61	N/A		29-JUN-95	24771	L4838-5
Chloride	mg/L	300.0	5.6	0.020		29-JUN-95	24769	L4838-3
Fluoride	mg/L	300.0	0.27	0.10		29-JUN-95	24772	L4838-3
Nitrate-N	mg/L	300.0	3.0	0.020		29-JUN-95	24766	L4838-3
Nitrite-N	mg/L	300.0	< 0.002	0.010	Ü.	29-JUN-95	24767	L4838-3
Ortho Phosphate	mg/L	300.0	0.034	0.10	В	29-JUN-95	24768	L4838-3
Sulfate	mg/L	300.0	32.	0.10		29-JUN-95	24770	L4838-3
Ammonia Nitrogen	mg/L	350.1	< 0.020	0.050	U	06-JUL-95	24789	L4838-7
Nitrate-Nitrite-Nitrogen	mg/L	353.2	3.3	0.050		05-JUL-95	24790	L4838-4
Sulfide	mg/L	9030	< 1.0	3.0	U	01-JUL-95	24793	L4838-6

96134 Lockheed Analytical Laboratory

Nonmetals Analytical Data Technical Review Checklist (Analyst)

Analyst Name (Print): (And Locks	Analysis Date: 06(29)95
Client(s) Name:	LAL Batch ID: 629-6k
Method No: 2000 (Alus 5 F- Pat	Instrument: 1C-545 142

	Description	Yes	No	Con	nments
Cor 1.	npleteness Review Was required method/SOP followed?	/			
2.	Are all raw data available and labeled properly (e.g., methods used, units, sample IDs, dilution factors, reruns)?	•			
3.	Are all nonconformities in the raw data noted and/or explained?	_			
4.	Were all the client samples analyzed for all constituents and QC as specified on the LAL Bench Sheets?	\			
Dat 5.	a Quality Assessment Were samples properly preserved and analyzed within the method-specified holding time?	\			
6.	Are instrument calibration criteria met?	/			
7.	Are initial and continuing calibration verification data (bracketing the samples of interest) within criteria?	1			
8.	Are bracketing initial and continuing calibration blank data within criteria?	/			
9.	Are matrix spike and/or matrix spike duplicate (if required) recovery data within criteria?	/			
10.	Are method blank data within criteria?	/			
11.	Are duplicate precision data within criteria?	/			-
12.	Are laboratory control sample data within criteria?				
13.	Has spike verification been performed adequately?	/		LAL ID(s): LA 838-3	SVP Initials:
14.	Has the status been updated in the ACS?	\			
Not	es and comments:				


I certify, to the best of my knowledge, that the data are acceptable and in compliance with the laboratory policies and client requests, except as noted above.

Analyst's Signature/Date

Secondary Reviewer's Initials/Date

96 34 Lockheed Analytical Laboratory

Nonmetals Analytical Data Technical Review Checklist (Analyst)

Analyst Name (Print)	Anal	Analysis Date: 67 06 85			
Client(s) Name:	1: :	LAL Batch ID: 629-6h			
Method No: პട്രപ് പപ്പട്ടപ്		Instrument: 35% Aufter			
		-200, 00			
Description	Yes	No	Comments		
Completeness Review 1. Was required method/SOP followed?	/				
Are <u>all</u> raw data available and labeled properly (methods used, units, sample IDs, dilution factor					
Are <u>all</u> nonconformities in the raw data noted as explained?	nd/or				
4. Were <u>all</u> the client samples analyzed for all cons and QC as specified on the LAL Bench Sheets?	stituents				
Data Quality Assessment 5. Were samples properly preserved and analyzed method-specified holding time?	within the				
6. Are instrument calibration criteria met?					
7. Are initial and continuing calibration verification (bracketing the samples of interest) within criter	1 - 1				
8. Are bracketing initial and continuing calibration within criteria?	blank data				
Are matrix spike and/or matrix spike duplicate (i recovery data within criteria?	f required)				
10. Are method blank data within criteria?					
11. Are duplicate precision data within criteria?	-				
12. Are laboratory control sample data within criteri	a?				
13. Has spike verification been performed adequatel	/y? /		LAL ID(s): SVP Initials: L4838-7		
14. Has the status been updated in the ACS?					
Notes and commental					

I certify, to the best of my knowledge, that the data are acceptable and in compliance with the laboratory policies and client requests, except as noted above.

07/26/15

Analyst's Signature/Date

Secondary Reviewer's Initials/Date

7/2/95

Method: 9030 Reactive, Total .
Batch: 629-fw1, 629-bh

Analyst: Mike Nys Analysis Date: 7/1/95

Sample Analysis:

Sample	Titrant	Sample	lodine	Sample		Suffice	QC
מו	Vol.(mL)	Vol.(mL)	(mL)	Dilution	(g or mit)	Conc. / Units	RESOVERIES
ICV	7.30	100	10.0	1		10.954 mg/L	96.6% REC
ICB	10.05	100	10.0	1		0.000 mg/L	
pb	10.05	100	10.0	1	<u> </u>	0.000 mg/L	
ics	8.00	100	10.0	1		8.165 mg/L	102.6% REC
L4839-14	10.00	200	10.0	4	50 mL	0.398 mg/L	
L4839-14D	10.10	200	10.0	4	50 mL	-0.398 mg/L	b RPD
L4838-6	10.00	200	10.0	1	200 mL	0.100 mg/L	
L4838-6D	10.00	200	10.0	1	200 mL	0.100 mg/L	6 RPD
L4838-6S	8.00	200	10.0	1	200 mL	4.083 mg/L	102.6% REC
CCV	10.20	100	15.0	1		19.418 mg/L	97.6% REC
CCB	10.10	100	10.0	1		-0.199 mg/L	

Q.C. Standards:

True Value of LCS = 7.96 mg/L from 1.00 mL stock #95136 at 796 mg/L.

True Value of ICV = 11.34 mg/L from 1.50 mL stock #95298 at 756 mg/L.

True Value of CCV = 19.9 mg/L from 2.50 mL stock #95136.

True Value of MS = 3.98 mg/L from 1.00 mL stock #95136 diluted to 200 mL.

Calculations:

Sulfide (mg/L) = [(A*B)-(C*D)*16,000] / mL sample * 4

Where:

A = mL iodine added;

B = normality of iodine;

C = mL titration;

D = normality titrant;

4 = The dilution factor from the reactivity part of the analysis
(50 mL sample to 50 mL of scrubber solution, then diluted to 200 mL)

Sulfide (mg/kg) = [(A*B)-(C*D)*16,000] / g sample * 1.333

Where:

A = mL iodine added;

B = normality of iodine;

C = mL titration;

D = normality titrant;

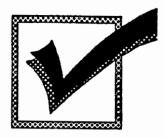
1.333 = The correction factor from the titrimetric part of the analysis (final volume of scrubber solution is 200 mL, but only 150 mL is used for the sulfide analysis [200/150 = 1.333].)

Standardization of Thiosulfate:

Wt. KIO3 (g)	/ Volume	- ml's used	= Wt. KIO3 used	
1.0123	100.0	1.0	0.010123	

Titration:

ml's	Ave.	Thiosulfate
11.40	11.400	Normality:
11.40		0.02489
11.40		


Standardization of lodine: 10.00 ml

Titration:

mi's	Ave.	lodine
10.05		Normality:
10.05		0.02502
10.05		

96 3 Lockheed Analytical Laboratory

Nonmetals Analytical Data Technical Review Checklist (Analyst)

Analyst Name (Print): A. Lacks	Analysis Date: 07 05 95
Client(s) Name:	LAL Batch ID: 629-6h
Method No: 353.2 NITENTE	Instrument: 359a Acquem

ter ja	Description	Yes	No	Co	mments
Cor 1.	npleteness Review Was required method/SOP followed?	/			
2.	Are <u>all</u> raw data available and labeled properly (e.g., methods used, units, sample IDs, dilution factors, reruns)?	/			
3.	Are <u>all</u> nonconformities in the raw data noted and/or explained?	/			
4.	Were all the client samples analyzed for all constituents and QC as specified on the LAL Bench Sheets?	-			
Dat 5.	a Quality Assessment Were samples properly preserved and analyzed within the method-specified holding time?	1			
6.	Are instrument calibration criteria met?	1			
7.	Are initial and continuing calibration verification data (bracketing the samples of interest) within criteria?	/			
8.	Are bracketing initial and continuing calibration blank data within criteria?	/			
9.	Are matrix spike and/or matrix spike duplicate (if required) recovery data within criteria?	/			
10.	Are method blank data within criteria?	1			
11.	Are duplicate precision data within criteria?	١			-
12.	Are laboratory control sample data within criteria?	١			
13.	Has spike verification been performed adequately?	~		LAL ID(s): L4838-4	SVP Initials:
14.	Has the status been updated in the ACS?				
No	tes and comments:				

I certify, to the best of my knowledge, that the data are acceptable and in compliance with the laboratory policies and client requests, except as noted above.

Analyst's Signature/Date

Sacradoru Baylayyar'

7/7/95

H:\General\QA\datachek.ino

Secondary Reviewer's Initials/Date

 \mathtt{CLP}

	1			
INORGANIC	ANALYSES	DATA	SHEET	

CLIENT	

	•	9	EE.C.C. DAIA		
Lab Name: L.A.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contract: Bl	ECHTEL_HA	BOG080
			• •		SDG No.: LK4838
Matrix (soil/w					e ID: L4838-22
evel (low/med	.): LOW				ived: 06/29/95
Solids:	0.0	= -			
			/L or mg/kg dry	v weight).	IIC /T.
	1		· · · · · · · · · · · · · · · · · · ·	y weight):	—ı
	CAS No.	Analyte	Concentration	c Q	м
	7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-96-5 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0 7440-62-2 7440-66-6	Antimony_Arsenic_Barium_Beryllium_Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium_Manganese_Nickel_Potassium_Selenium_Silver_Sodium_Thallium_Vanadium_Zinc	29.0 58.0 98.0 25.8 1.0 5.0 43400 9.1 6.0 3.0 13.7 56.0 10300 2.0 15.0 4960 108 4.0 14800 50.0 10.0 4.0	UBUU BUUBU UUBU UUBU UUBU UUBU UUBU UU	
Color Before:			cy Before:		Texture: Artifacts:
omments:				 	

FORM I - IN

	, ⊥		
INORGANIC	ANALYSES	DATA	SHEET

CLIENT	ΗD	NO.	
1			_
Book	70		

		INORGANIC A	ANALYSES DATA	SHEET	1
Lab Name: L.A.	S	. <u> </u>	Contract: BI	ECHTEL_HA	BOG079
ab Code: LOCK	Ca:	se No.: 62	9BHT SAS No.	:	SDG No.: LK4838
Matrix (soil/w	ater): WATE	R		Lab Sampl	e ID: L4838-2
Level (low/med): LOW_	_		Date Rece	eived: 06/29/95
Solids:	0.0	0			
Со	ncentration	Units (ug	/L or mg/kg dry	y weight):	UG/L_
	CAS No.	Analyte	Concentration	C Q	M
	7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-95-4 7439-95-4 7439-96-5 7440-02-0 7440-09-7 7782-49-2 7440-23-5	Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium_ Chromium_ Cobalt_ Copper_ Iron_ Lead_ Magnesium Manganese Nickel_ Potassium Selenium_ Silver_ Sodium_ Thallium_ Vanadium_ Zinc	31.9 58.0 98.0 27.0 1.0 5.0 42800 14.5 6.0 3.0 144 56.0 10600 5.3 15.0 4980 87.0 4.0 15300 50.0 10.5 7.6		
Color Before:			Ty Before: CLE	_	Texture:
Color After:	COLORLESS	Clarit	ty After: CLEA	AR_	Artifacts:
Comments:					
				· ·	

FORM I - IN

Lockheed Analytical Laboratory

Metals Analytical Data Technical Review Checklist (Analyst)

Analyst Name (/	Print): J. Lindner	Instrument: 7JA ICP 61E	Method	d: 6010	
Batch Number	Client Name	Code Comments		Bench Sheet included Y/N	ACS updated Y/N
706 cas		(Dilutions) - OK for Na		ý	У
706 tt		13 w 12 (see notes) 10 (306 pph - ZN)	REDI	GEST REG	UIRED!
6296AT	Bechtel Hanford Inc			Y	Y
6296hD				Y	Y
	·				

CODE ANOMALY

- 10 Prep Blank data was not within criteria
- 11 Laboratory Control Sample was not within criteria
- 12 Duplicate Precision was not met
- 13 Matrix Spike recovery was not within criteria
- 00 Other

	Description	Yee	No	Comments
Com _l	pleteness Review Were the standard operating procedures (SOP) followed?	,		
2.	Are all raw data available and labeled properly (e.g., methods used, units, sample IDs, dilution factors, reruns)?	4		
3.	Are all abnormalities in the raw data noted and/or explained?	1		
4.	Were all the client samples analyzed for all constituents and QC as specified on the LAL Bench Sheets2	1.		
Data 5.	Quality Assessment Was the sample properly preserved and analyzed within the method- specified holding time?	,		
6.	Were the instrument calibration criteria met?	1		
7.	Are the initial and continuing calibration verification samples data bracketing the samples of interest within criteria?	,		
8.	Are the bracketing initial and continuing calibration blank data within criteria?	,		
9.	For ICP Only: Are the interference check standard recovery data within criteria?	1		
Note	es and comments:			
(1	Pb (1697.) & (12) Pb (221.) Due to sample texture (mo	edium)	E NON	uniformity
(1	Prep Blank - 306 ppb ZN			

I certify, to the best of my knowledge, that the data are acceptable and in compliance with the laboratory policies and client requests, except as noted above.

Analyst Signature/Date

Secondary Reviewer Initials/Date

for I. Heitschmidt

Lockhee	? d
---------	------------

ICP RUN LOG

Nate: 12 Jul 95	Start Time: _/648					
nalyst: _ & Lindo	End Time: 2232					
ensitivity Check (10 ppm Mn / 10 ppm Cu): 2 38						
P File Folder: _	S951934, 08F					
	QC REFERENCE PAGE: 306					
BATCH #	COMMENTS					
706 cds	(Dilutions) OK for No - Complete					
706 tt	Redigest Required - 306 ppb In in prep blank					
6296hT	OK - Complete					
6296HD	OK Complete					
	13 V51 95					
	The kept in a 3-ring binder next to the instrument and will be bound as needed.					
REVIEWER:	DATE:					

LAL-95-LOG-0733

000147

ICP RUN LOG - QC REFERENCE PAGE

306

	SOURCE	LOT NUMBER	PREPARATION DATE	EXPIRATION DATE
ICV	NIST/Incoganic Ventures	45066 A	3/1/95	i0/1/95
MICV	изт	95118	4 / 26/95	٩/١/٩6
CRI	Incoganie Ventures	95118	4/28/95	9/1/96
ICSA	u	9101276417	_	4/1/96
ICSAB	а	910187 5433	_	9/1/95
STD A	и	45062	3/3/95	9/1/95
STD B	п	45073443	7/6/95	9/1/95

215 sauce

SPIKE A	Inorganic Ventures	45084	3/30/95	9/1/95
SPIKE B	Plasma-Chem. Assoc.	9101876027		2/28/96
SPIKE C	Inorganic Ventures	95089	3/30/95	11/1/95
AFCEE Spike	s d	95123	5/3/95	9/1/95
TCLP Seike	а	45118	4/28/95	9/1/95

	<u> 75</u>
Date:	
	Date:

LOCKHEED ANALYTICAL SERVICES

RAD DATA REPORT (ra01)

Bechtel Hanford, Inc. * Richland, WA

Bechtel Hanford Project (Project BECHTEL-HANFORD)

Client Sample ID: B0G079

LAL Sample ID: L4838-8

Date Collected:

27-JUN-95

Date Received: 29-JUN-95

Matrix:

Water

Login Number: L4838

Constituent	Analyzed	Batch	Activity	Errar	MDA	DataQu	al Units
Gross Alpha Gross Beta Total radio-strontium U-233/4 U-235 U-238	19-JUL-95 11-JUL-95 12-JUL-95 12-JUL-95	GR ALP/BETA LAL-0060 24940 GR ALP/BETA LAL-0060 24940 SR-90 LAL-0196 24941 U-ISOTOPIC LAL-0108 24942 U-ISOTOPIC LAL-0108 24942 U-ISOTOPIC LAL-0108 24942	1.3 5.1 -0.14 1.47 0.45 1.05	1.4 1.7 0.52 0.38 0.21 0.32	2.3 2.4 0.92 0.17 0.11 0.17	С	pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L

LOCKHEED ANALYTICAL SERVICES

RAD DATA REPORT (ra01)

Bechtel Hanford, Inc. * Richland, WA

Bechtel Hanford Project (Project BECHTEL-HANFORD)

Client Sample ID: BOG079

LAL Sample ID: L4838-17

Date Collected:

27-JUN-95 Date Received: 29-JUN-95

Matrix:

Water

Login Number: L4838

Constituent		Analyzed Batch		Activit	у Еггог	MDA	DataQual Units
н-3	•	21-JUL-95 TRITIUM(H3) LAL-0066_24943	520	240	250	pCi/L

LOCKHEED ANALYTICAL SERVICES

RAD DATA REPORT (ra01)

Bechtel Hanford, Inc. * Richland, WA

Bechtel Hanford Project (Project BECHTEL-HANFORD)

Client Sample ID: BOG079

LAL Sample ID: L4838-18

Date Collected:

27-JUN-95


Date Received: 29-JUN-95

Matrix:

Water

Login Number: L4838

Constituent	Analyzed	Batch	Activity	r Errar	MDA	DataQual Units	
Tc-99	19-JUL-95	TC-99 LAL-0169_24944	5.3	8.6	10.	pCi/L	

National Institute of Standards & Technology

Certificate

THIS IS A PHOTOCOPY OF THE CERTIFICATION WHICH IS BEING MAILED TO YOU UNDER SEPARATE COVER.

Standard Reference Material 4321B Alpha-Particle Solution Standard

Radionuclide

Natural Uranium

Source identification

SRM 4321B

Source description

Liquid in 5-mL flame-sealed glass

ampoule

Source mass

Approximately 5.3 grams

Solution composition

Natural uranium in 1-molar nitric

acid_

Uranium concentration

0.01998 g g⁻¹

Reference time

1200 EST January 1, 1992

Radioactivity concentration

U-238: 246.7 Bq g-1

U-235: 11.35 Bq g¹

U-234: 237.6 Bq g⁻¹

Overall uncertainty

U-238: 0.87 percent (1) *

U-235: 0.96 percent U-234: 1.86 percent

Measuring instrument

Mass spectrometer, silicon surface-barrier

detector, and $4\pi(\alpha+\beta)$ liquid-scintillation

counter (3)

Half life

U-238: $(4.468 \pm 0.005) \times 10^9$ years (7)

U-235: $(7.037 \pm 0.011) \times 10^{6}$ years U-234: $(2.454 \pm 0.006) \times 10^{5}$ years

This standard reference material was prepared in the Physics Laboratory, Ionizing Radiation Division, Radioactivity Group, Dale D. Hoppes, Group Leader.

Gaithersburg, MD February, 1992 William P. Reed, Chief Standard Reference Materials Program

NOTES

Individual uncertainties have the significance of one standard deviation of the mean, or an approximation thereof. The combined uncertainty is the individual uncertainties shown below added in quadrature. The overall uncertainty is taken to be three times the combined uncertainty.

SOURCE OF UNCERTAINTY	UNCERTAINTY (%)		
	U-238	U-235	U-234
a) uranium assay of SRM 960	0.02	0.02	0.02
b) uranium atom ratio	0.01	0.07	0.50
c) quantitative dissolution	0.25	0.25	0.25
d) gravimetric measurements	0.10	0.10	0.10
e) half life	0.11	0.16	0.24
Combined uncertainty	0.29	0.32	0.62
	х 3	ж 3	x 3
Overall uncertainty	0.87	0.96	1.86

- SRM 4321 was prepared by quantitatively dissolving a carefully cleaned and weighed piece of well-characterized natural uranium metal. This natural uranium metal was formerly issued by the National Bureau of Standards as SRM 960. The solution in SRM 4321B was carfully examined using thermal-ionization mass spectrometry, silicon surface-barrier alpha-particle spectrometry, and $4\pi(\alpha+\beta)$ liquid-scintillation counting. The values that we recommend for the U-234/U-238 atom ratio and alpha-particle-emission-rate ratio in SRM 4321B are $(5.29 \pm 0.02) \times 10^{-3}$ and 0.963 ± 0.003 , respectively. (See the Information for Users of SRM 4321 and SRM 4321B, Natural Uranium Solution.)
- ⁽³⁾ Table of Radioactive Isotopes, E. Browne and R.B. Firestone, John Wiley and Sons, Inc., New York (1986).

For further information please contact Dr. L.L. Lucas, (301) 975-5546; or J.M. Calhoun, (301) 975-5538.

SRM 4321B

NOTES

(1) Individual uncertainties have the significance of one standard deviation of the mean, or an approximation thereof. The combined uncertainty is the individual uncertainties shown below added in quadrature. The overall uncertainty is taken to be three times the combined uncertainty.

	Source of uncertainty	Unce	rtainty	(%)
		<u>U-238</u>	บ-235	U-234
a)	original calibration of SRM 960	0.01	0.05	0.28
b)	quantitative dissolution	0.07	0.07	0.07
c)	gravimetric measurements	0.07	0.07	0.07
d)	half life	0.07	0.07	0.41
	Combined uncertainty	0.12 * 3	0.13	0.51
	Overall uncertainty	0.36	0.39	1.53

- (2) SRM 4321 was prepared by quantitatively dissolving a piece of natural uranium metal (SRM 960) that had been characterized by quantitative assay and by mass spectrometry.
- (3) Radioactive Decay Data Tables, D.C. Kocher, DOE/TIC-11026 (1981).

For further information call Larry Lucas at (301) 975-5546.

SRM 4321

Dear Customer:

Data S	Sh e et (N ige in ou	Reference Material(s) (SRM'(s)) for which you have requested a Material Safety MSDS), 4321B, U-238 is excluded from air regular MSDS system of more than 100 sheets for one or more of the following
1		The SRM is an article, as that word is defined in paragraph (c) of section 1910.1200 of title 29 of the Code of Federal Regulations which does not release of otherwise result in exposure to a hazardous chemical, under normal conditions of use.
2		The SRM has been determined to be non-hazardous by the National Institute of Standards and Technology under paragraph (d) of section 1910.1200 of title 29 of the Code of Federal Regulations. The SRM will not release or otherwise result in exposure to a hazardous chemical under normal conditions of use.
3		The SRM is a pesticide or hazardous waste labeled according to regulations issued by the Environmental protection Agency.
4		The SRM is a food, food additive, or drug labeled according to regulations issued by the Food and Drug Administration.
5		The SRM is a wine labeled according to regulations issued by the Bureau of Alcohol, Tobacco, and Firearms.
5		The SRM is a radioactive material labeled according to regulations issued by the Nuclear Regulatory Commission. The Shipper's Declaration form included with the shipment states chemical form, physical state, and activity of SRM.
7		The SRM is a tobacco or tobacco product, wood, or wood product which is exempted by paragraph (b) (5) (ii) and (iii) of section 1910.1200 of title 29 of the Code of Federal Regulations from the provisions of that section.

If we can be of assistance to you in regard to this matter, or any issue related to SRMs, please do not hesitate to write to me.

Sincerely,

Stanley D. Rasberry Chief

Office of Standard Reference Materials

INITIAL STANDARD DILUTION RECORD

	Standard In	formation:		
Isotope:	U-238	Vendor:		NIST
Activity of Standard Received:	0.035338 uCi	Vendor I.D. #		
Weight of Standard Received (g):	5.3 g	LAL I.D. #:		AA9804
Standard Activity (pCi/g):	6.67E+03 pCi/g	NIST Traceable ?		yes
Halflife in Years or Days:	4.468E + 09 yrs	Certificate #:		SRM4321B
Reference Date:	1/1/92	Receiver's Name:		Kevin Free
•	,	Date Received:		8/19/93
	Acres (Marie Company)	Ng Ng		
The second secon	Primary	Dilution		2
Balance Verification?:		yes		
Diluent Used:		1 M HN03		
a: Decay Corrected Standard Acti	ivity (pCi/g):	6.67E+03	pCi/g	
b: Weight of the Source Transferi	red (g):	5.23707	g	
c: Total diluted weight (g):		132.03	9	
d: Total Diluted Volume (mL)		128.28	mL_	
e: Activity of Dilution by Weight	(pCi/g) [a • b / c]:	2.645E+02	pCi/g	·
f: Calculated Density of Selection (g/ml) [c / d]:	1.029E+00	g/mL	· · ·
g: Activity of Dilution by Volume (l pCi/m L) [e * f]:	2.722E+02	pCi/ml	
h. Dilution Logbook I.D. #:		LAL-93-474-14-1		·
Prepared By:		Preparation Date:		8/20/93
,		Review Date:		
Purity/Cross Check Performed By		_ Check Date:		

	Notebook No. 617
_	Continued From Page

SECONDARY/WORKING LEVEL 'EL STANDARD DILUTION RECORD

Dilution Source Information					
Isotope:	U-238				
Parent Barcode Number	A A 9804				
Vendor or Certificate I.D. # of Parent Standard:	SRM 4321B				
Diluted Source Logbook I.D. #:	93-474-14-1				
Balance Verification?:	yes				
Diluent Used:					

	Dilution
*Diluent:	1 M HN03
*Density of diluent (g/ml):	N/A g/ml
a: Parent Specific Activity:	272-2) pci/ml pci/g Aw 1-21-95
b: Amount of Source Transferred:	5.9495 0
c: Total amount of Dilution:	141.58 g
d: Total Volume of Dilution:	N/A ml
e: Activity of Dilution [a * b / c]:	N/A pCi/g
f: Activity of Dilution (a * b / d):	11.44 pCi/ml
Dilution Logbook I.D. #:	94-677-30-1
Prepared By: James Won	Preparation Date: $(-21-95)$ Review Date: $1/26/55$
Reviewed By: Och Hetter	Review Date: 1/26/95
_	ised for the dilution source, then a weight dilution of a volume unit source the diluent changes, a weighted proportion density conversion is necessary.
can be performed without a density conversion. If	the dident changes, a weighted proportion density conversion is necessary.

PROJECT	-232	9613428.1498	Continued From Page
		1 . 5.	

CALIBRATION OF U-232

2 mL of U-232 at 6635 dpm/mL (91-225-36-1, AA0078) was run through the AG1-X8 column in 9M HCl for removal of daughter products. U-232 was stripped off with 0.5 M HCl at the end of the procedure. This solution was taken down to dryness. It was then brought up in 2 M HNO₃ to 500 mL. Calibration of this tracer was performed with 0.5 mL U-238 (11.44 pCi/mL, 94-677-30-1) and samples were counted for 10 hours.

CHILD ID	U-232 GROSS COUNTS per 0.5 mL	U-238 GROSS COUNTS	CALCULATED U-232 VALUE IN pCi/0.5mL
U160595	1727.7	1956.6	5.05
U260595	1806.8	2007.8	5.15
U360595	1720.9	1911.2	5.15
U460595	1568.8	1869.1	4.80
U560595	1557.7	1888.8	4.72
U660595	1413.9	1660.8	4.87
			4.96 pCi ± 0.18 pCi/mL

The value calibrated for this tracer was 9.92 pCi/mL with a precision of ±3.6%

U-232 Logbook Reference # 95-721-11-1

		1 69 1 69 1 69 1 69 1 69 1 69 1 69 1 69	,
		Continued	on Page
Ognes Wong Signed	6-6-95 Date	Read and Understood &;	348

Radioactive Source Test Report

Model No .:

NA

Radioisotope:

U-232

Nominal activity: 10 kBq

Product Code No.:

92/232/19

Description:

U-232 alpha tracer solution

Capsule:

ANSI Classification

NA

Special Form Certificate No.: NA

Classifications are based on the testing of specimen sources and give the levels expected from production sources.

Recommended working life:

See other side for explanation

Source Serial	Measurement U=232			Leakage test	Contamination test		
number	Activity	date		type	type	туре	
	Concentration kBq/g		See other side for description of tests date passed date passed date				
AE 5292	2.04 ± 0.02	l2 June	1981	N A	NA	NA	
,				,			
					· ·		

Notes -

5 ml (nominal) tracer solution of Uranium-232/Th-228 Solution in 2 M HNO₃

Th-228

Activity ratio 1.00 ± 0.01 on 11 September 1981

U-232

AMERSHAM IS ACCREDITED BY THE NATIONAL MEASUREMENT ACCREDITATION SERVICE (NAMAS) IN THE UK. REFERENCE SOURCES SUPPLIED BY ACCREDITED LABORATORIES ARE FULLY TRACEABLE TO STANDARDS HELD BY NATIONAL LABORATORIES. MEASUREMENT DATA REPORTED IN THIS CERTIFICATE IS TRACEABLE TO THE NATIONAL PHYSICAL LABORATORY (NPL) IN TEDDINGTON, ENGLAND. NPL IS TRACEABLE TO THE U.S. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) THROUGH THE BUREAU INTERNATIONAL DES POIDS ET MESURES (BIPM).

Customer: Lockheed Analytical Labs

Customer's Order No.:

06LAB1244

Amersham Order No.:

66610

Date:

November 8, 1991

Michael Snyder, Product Manager

Amersham Corporation

2636 South Clearbrook Drive, Arlington Heights, IL 60005

1-(800) 323-6695 (Toll Free)

Amersham Canada Limited 1166 South Service Road West, Oakville, ONT L6L 5T7 1-(416) 847-1166 TAIL From: 1.48001 287.7180 (Ontil to ben) /1,18001 287 7146 (mar of

Imershal

PROJEC	CT		`	~		100							 		Co	ntinu	earı	om F	age	 		
						100				R										 	 	
		_				F 198	the state of	Avan Most	御 特殊	A Reply May												
					 					:	 	_		 	_						 	

CALIBRATION OF U-232

2 mL of U-232 at 6635 dpm/mL (91-225-36-1, AA0078) was run through the AG1-X8 column in 9M HCl for removal of daughter products. U-232 was stripped off with 0.5 M HCl at the end of the procedure. This solution was taken down to dryness. It was then brought up in 2 M HNO₃ to 500 mL. Calibration of this tracer was performed with 0.5 mL U-238 (11.44 pCi/mL, 94-677-30-1) and samples were counted for 10 hours.

CHILD ID	U-232 GROSS COUNTS per 0.5 mL	U-238 GROSS COUNTS	CALCULATED U-232 VALUE IN pCi/0.5mL
U160595	1727.7	1956.6	5.05
U260595	1806.8	2007.8	5.15
U360595	1720.9	1911.2	5.15
U460595	1568.8	1869.1	4.80
U560595	1557.7	1888.8	4.72
U660595	1413.9	1660.8	4.87
			4.96 pCi ± 0.18 pCi/mL

The value calibrated for this tracer was 9.92 pCi/mL with a precision of $\pm 3.6\%$

U-232 Logbook Reference # 95-721-11-1

															,		1		ł	ı	~	۱۵,	∧N	لعو	, V	ص المار	\ \9	{/	ľ	:		•
	÷		\vdash	†	+										<u> </u>		ļ				7	1	1		V	\$:		
							·																			Con	tinue	d on	Pag	e		
		^															Read	and	Und	ersto	od E	Ву	-									
		1	ZXI	es		1	1)	n	2		6	-6	-9	5	-																35	0
Signed Date								•					Sign	ed								Date	·									

RC 14 5/3/97 AC 5/3/97 RUS.

U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory-Las Vegas Nuclear Radiation Assessment Division

Calibration Certificate

	·
Description	Francipal redemudide Strontium-90 Hell-life 28.6 years
	Nominal activity 27 nano curies
	Nominal volume 5 ml in ampoule/bottle number 94003-1
Measurement	Activity of principal radionuclide
	Activity per gram of this solution
	5.40 nano curios of Strontium-90
	at 0400 hours PST on April 1, 1994
	Activity of daughter radionuclide
	The principal activity was accompanied at the quoted time by
	5.40 nanocures Per gram
	of the daughter muclide Yttrium-90
	Total mass of this solution
	Approximately 5.0
	Method of measurement
	The activity of the primary solution was measured by liquid scintillation counting.

The activity of the dilution was measured by liquid scintillation counting.

Useful Life	This redienuclide has decayed through	0.0	hell tives since at was abtained by EMSL-LV
	We recommend that this solution should r	vet be used efte	August 1994

This dilution was prepared for the 1994 ASTM Collaborative Study of a test method for the determination of Sr-90 in water.

	Preservative:		
of Solution	30 micrograms strontium	0.1	M HC1
Chemical Composition	Carrier content per gram of solution:		components:
	Strontium-90 decays 100 peyttrium-90. Yttrium-90 a.beta emission.	ercent by b lso decays	eta emission to 100 percent by
Decay Schemes	This standardization is based on the following daughter nuclides and impurities (no allows assumption of quoted half-life have been in	snce for error in th	sse assumptions or the
	the overall uncertainty (often called accurace the quoted result from the true value. It is a confidence limits and the worst case estimate the overall uncertainty is therefore calculated and is \$\(\frac{4.0}{4.0}\)\$. \$\(-4.0\)\$ of the quantum of the overall uncertainty is the entire true of the quantum o	e combination of rate of the systemate of the systemate of the basis of	indom error [t(sm)] at the 99.79 ic errors (+ & , – & ') + [ਖ(sm) + &] , – [t(sm) +&]
	The maximum uncertainty due to the assess known uncertainty of the standard) is obtain positive and negative systematic error ($+\delta$ + 3 , 8 % or -3.8 %	ed by the separate	arithmetic summation of the
	(The 99.7% confidence limits are given by the for the degree of freedom (n-1)).	sm) where t is oou	uned from the student t factor
	concentration of the principal activity had a		
	The precision of this standard was such that	t the certified value	of the radioactive
Random Errors		.	
	The activity of impurity (1) is not (2) is not (3) is included in the quoted figures of the principal		
	(3)	less than equal to	% of the principal activity
	(2)	less than equal to	% of the principal activity
	(1)	less than equal to	of the principal activity

477

Date Certificate Prepared

Approval Signature

Parl B. Hahn

5r-90

82				
ρg	0.	F	\Box	•

Notebook No. 0474

Continued From Page

INITIAL STANDARD DILUTION RECORD

Standard In	formation:
Isotope: Sr-90	Vendor: <u>EPA</u>
Activity of Standard Received: 2.7×10 4 uCi	Vendor I.D. # 94003-1
Weight of Standard Received (g): 5 0 g	LAL I.D. #: A C 5 2 8 \
Standard Activity (pCi/g): 5.4 x 10 ³ pCi/g	NIST Traceable ?
Halflife in Years or Days: 28 6 yrs	Certificate #: 94003 - 1
Reference Date: 4-1-1994	Receiver's Name: K Free
	Date Received: 5-3-94
	·
Primary	Dilution
Balance Verification?:	Yes
Diluent Used:	0.1mHCl
a: Decay Corrected Standard Activity (pCi/g):	5.4 x 10 3 pCi/g
b: Weight of the Source Transferred (g):	4.9670 0
c: Total diluted weight (g):	49.91 0
d: Total Diluted Volume (mL)	50 mL
e: Activity of Dilution by Weight (pCi/g) [a * b / c]:	531.4 pCi/g
f: Calculated Density of Solution (g/ml) [c / d]:	0.9982 g/mL
g: Activity of Dilution by Volume (pCi/mL) [e * f]:	536.44 pCi/mL
h. Dilution Logbook I.D. #:	93-474-82-1 Cr4/1/95
Prepared By: James Won	Preparation Date: 6-15-94
Reviewed By: Ook Hitchism	Review Date: 6/30/94
Purity/Cross Check Performed By:	Check Date: 478
May stated,	
Signed Date	Signed Date

Notebook No. 0474

Continued From Page

SECONDARY / WORKING LEVEL STANDARD DILUTION RECORD

Isotope:	Am-241 And Sry-90
From NIST traceable standard?:	Yes
Vendor or Certificate I.D. # of parent standard:	AL-241 IPL - 388-100-1 Sn-90 NIST SRM 49196
Diluted source logbook I.D. #:	Am-241 91-0225-60-1 Sr-90 91-0225-30-2
Balance verification?:	' Yes
Diluent used:	0.1 N HNO3

Diluent:	0.1N HN 03 + 42mg SNO3) 1/m
Density of diluent (g/ml):	NA
a. Parent standard activity:	An-241 9810 pc:/nl Sn-90 6000 pc:/nl on 8/1/90 Am-241 0,5 nl
b. Amount of standard transferred:	Am-241 0,5 mL Sn-90 0,5 mL
c. Total amount of dilution:	500 mL An-241 9.81 pe:/mL
i. Activity of dilution [a * b / c]:	An-241 9.81 pc/mL Sr4-90 6.0 sc./mL m 8/1/90 1019 pc./mL m 8/1/94
Dilution logbook I.D. #:	93-0474-94 = 8/1194
Prepared by: Doe Hutten Reviewed by:	Preparation date: 8/11/94 Work Review date: 8/11/94
f the diluent remains unchanged from the diluent used for the dil	lution source, then a weight dilution of a volume unit source can be performed without (

Read and Understood By

179

179

Signed Date Signed Date

The cal & make 91- 0225-60-1 ANDO30.

CERTIFICATE OF CALIBRATION ALPHA STANDARD SOLUTION

Radionuclide

Am-241

Customer: LOCKHEED ENGINEERING & SCIENCES Co.

0.997

Half Life:

 432.7 ± 0.5 years

P.O.No.:

06LAB1245

Catalog No.:

7241 388-100-1 Reference Date:

Contained Radioactivity:

November I 1991

12:00 PST.

Source No.: Description of Solution

a. Mass of solution:

5.0007

μCi.

b. Chemical form:

AmCl3 in 0.5N HCl

c. Carrier content:

None added

gram/mi @ 20°C.

d. Density:

1.0077

Radioimpunities

None detected

Radioactive Daughters

None detected

Radionuclide Concentration

0.1994

μCi/gram.

Method of Calibration

Weighed aliquots of the solution were assayed using a liquid scintillation counter.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

±2.0%

b. Random uncertainty in assay:

+0.7%

c. Random uncertainty in weighing(s):

±0.0%

d. Total uncertainty at the 99 % confidence level:

±2.7%

NIST Traccability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Notes

- 1. Nuclear data were taken from "Table of Isotopes", Seventh Edition, edited by Virginia S. Shirley.
- IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay(and later NIST certification) of Standard Reference Materials. (As in NRC Regulatory Guide 4.15)

ISOTOPE PRODUCTS LABORATORIES

1800 No. Keystone Street., Burbank, California 91504

(818) 843 - 7000

/发. Traccoul & make 91- 0225-60-1 ANOB3x

CERTIFICATE OF CALIBRATION ALPHA STANDARD SOLUTION

Radionuclida

- Am-241

Customer: LOCKHEED ENGINEERING & SCIENCES (

Half Life:

 $432.7 \pm 0.5 \text{ years}$

P.O.No .:

06LAB1245

Catalog No.:

7241

Reference Date:

November 1 1991

12:00 PST.

Source No.:

388-100-1

Contained Radioactivity:

ø

Description of Solution

a. Mass of solution:

5.0007

b. Chemical form:

c. Carrier content:

None added

d. Density:

1.0077

gran/mi @ 20°C.

Redicimouricies

None detected

AmCl3 in 0.5N HCl

Radioactive Dangle

None detected

Radionaciide Concentration

0.1994

عدولاتم

Method of Calibration

Weighed aliquots of the solution were assayed using a liquid scintillation counter.

Uncertainty of Monogrammat

a. Systematic uncertainty in instrument calibration:

±20%

b. Random uncertainty in essay:

±0.75

c. Random uncertainty in weighing(s):

±0.0%

d. Total uncertainty at the 99% confidence level:

+27%

NIST Terceshiller

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Noise

- 1. Nuclear data were taken from "Table of Isotopes", Seventh Edition, edited by Virginia S. Shirley.
- 2. IPL participates in an NIST measurement senarance program to establish and maintain implicit traceshility for a number of suclides, based on the blind sensy(and later NIST certification) of Standard mas Materials. (As in NRC Regulatory Guide 4.15)

BOTOFE PRODUCTS LABORATORIES

1800 No. Keystone Street., Bachank, California 91504

(818) 843 - 7000

William 15 make 91- 0225-60-1 AA0030

CERTIFICATE OF CALIBRATION ALPHA STANDARD SOLUTION

Radionuclide

Am-241

Customer: LOCKHEED ENGINEERING & SCIENCES Co.

Half Life:

432.7 ± 0.5 years

P.O.No.:

06LAB1245

Catalog No.:

7241

Reference Date:

November i 1991

12:00 PST.

Source No.:

388-100-1

Contained Radioactivity:

0.997

Description of Solution

a. Mass of solution:

5.0007

ETEMS.

b. Chemical form:

AmCl3 in 0.5N HCl

c. Carrier content:

None added

d. Density:

1.0077

gram/mi @ 20°C.

Radioimpurities

None detected

Radioactive Daughters

None detected

Radionuclide Concentration

0.1994

μCi/gram.

Method of Calibration

Weighed aliquots of the solution were assayed using a liquid scintillation counter.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

±2.0%

b. Random uncertainty in assay:

±0.7%

c. Random uncertainty in weighing(s):

+0.0%

d. Total uncertainty at the 99% confidence level:

+2.7%

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Notes

- 1. Nuclear data were taken from "Table of Isotopes", Seventh Edition, edited by Virginia S. Shirley.
- 2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay(and later NIST certification) of Standard Reference Materials. (As in NRC Regulatory Guide 4.15)

ISOTOPE PRODUCTS LABORATORIES 1800 No. Keystone Street., Burbank, California 91504 (818) 843 - 7000

ID	Desc	Count	Alpha	Beta	Hi	Time	Date	CPM	СРМ	EFF	EFF	Net	A>>B	EFF Fit	X-T Fit
		Time	Counts	Counts	Voltage			Alpha	Beta	Alpha	Beta	Weight	X-Talk	(qd-exp)	(qd-exp)
A1	ACAL01	25	0	24	1417.5	14:06:25	7-12-94	0.00	0.96	0.0000	0.0000	0.0010			
A 1	ACAL14	25	12947	4934	1417.5	13:06:32	7-13-94	517.88	197.36	0.1990	0.0755	0.0001	0.3792	0.2173	0.2579
A1	ACAL02	25	14521	3695	1417.5	14:41:54	7-14-94	580.84	147.80	0.2232	0.0564	0.0090	0.2528	0.1987	0.2546
A1	ACAL03	25	11434	2909	1417.5	13:52:40	7-14-94	457.36	116.36	0.1758	0.0444	0.0188	0.2523	0.1804	0.2521
A1	ACAL04	25	11807	3006	1417.5	13:24:15	7-14-94	472.28	120.24	0.1815	0.0458	0.0190	0.2526	0.1801	0.2521
A 1	ACAL05	25	9909	2343	1417.5	12:29:47	7-14-94	396.36	93.72	0.1523	0.0356	0.0374	0.2340	0.1512	0.2503
A1	ACAL06	25	8523	2047	1417.5	12:02:21	7-14-94	340.92	81.88	0.1310	0.0311	0.0555	0.2374	0.1282	0.2521
A1	ACAL07	25	7210	1930	1417.5	11:24:13	7-14-94	288.40	77.20	0.1108	0.0293	0.0738	0.2644	. 0.1093	0.2577
A 1	ACAL08	.25	7008	1799	1417.5	10:50:44	7-14-94	280.32	71.96	0.1077	0.0273	0.0739	0.2533	0.1092	0.2578
A1	ACAL09	25	5435	1528	1417.5	16:53:15	7-13-94	217.40	61.12	0.0836	0.0231	0.0931	0.2767	0.0932	0.2679
A1	ACAL10	25	5319	1487	1417.5	15:51:27	7-13-94	212.76	59.48	0.0818	0.0225	0.1070	0.2751	0.0835	0.2783
A1	ACAL11	25	4838	1442	1417.5	15:18:33	7-13-94	193.52	57.68	0.0744	0.0218	0.1284	0.2931	0.0711	0.3000
A1	ACAL12	· 25	5221	1527	1417.5	14:50:59	7-13-94	208.84	61.08	0.0803	0.0231	0.1283	0.2879	0.0712	0.2998
A1	ACAL13	25	3770	1299	1417.5	14:00:15	7-13-94	150.80	51.96	0.0580	0.0196	0.1467	0.3382	0.0625	0.3249

Efficiency Regre	ssion Outpu	ıt:	X-T Regression Outp	ut:	
Constant		-1.5253	Constant		-1.3552
Std Err of Y Est		0.07579	Std Err of Y Est		0.0293
R Squared		0.97426	R Squared		0.9239
No. of Observati	ions _.	13	No. of Observations		10
Degrees of Free	dom	10	Degrees of Freedom		7
X Coefficient(s)	-10.1580	11.2837	X Coefficient(s)	-1.6119	21.7165
Std Err of Coef.	1.6846	11.3911	Std Err of Coef.	0.8114	5.3127

Regressions for all efficiency curves & the A1 crosstalk curve are quadratic exponential fits.

ACAL14, ACAL05, & ACAL06 were not used for the crosstalk curve – poor data points.

THIS IS A PHOTOCOPY OF THE CERTIFICATE WHICH IS BEING MAILED TO YOU UNDER SEPARATE COVER.

National Institute of Standards & Technology

Certificate

Standard Reference Material 4919-G Radioactivity Standard

Radionuclide

Strontium-90

Source identification

4919-G

Source description

Solution in NIST borosilicate-glass ampoule (1)*

Solution composition

Strontium-90 plus yttrium-90 plus approximately 95 µg each of non-radioactive strontium and yttrium per gram of 1-molar hydrochloric acid (2)

Mass

Approximately 5.0 grams

Radioactivity concentration

4.514 x 103 Bq g-1

Reference time

1200 EST August 1, 1990

Overall uncertainty

1.05 percent (5)

Photon-emitting impurities

None observed (4)

Alpha-particle-emitting impurities

None observed (5)

Half life

28.5 ± 0.2 years (9)

Measuring instrument

4πβ liquid-scintillation counter

This standard reference material was prepared in the Center for Radiation Research, Ionizing Radiation Division, Radioactivity Group, Dale D. Hoppes, Group Leader.

Gaithersburg, MD 20899 ruary, 1991 William P. Reed, Acting Chief Office of Standard Reference Materials

^{*}Notes on back

NOTES

(1) Approximately five milliliters of solution. Ampoule specifications:

body diameter wall thickness 0.60 ± 0.04 mm

barium content lead oxide content other heavy elements 16.5 ± 0.5 mm

0.60 ± 0.04 mm

less than 2.5 percent less than 0.02 percent trace quantities

- Solution density is 1.014 ± 0.002 g/mL at 21.5 °C.
- The overall uncertainty was formed by taking three times the quadratic combination of standard deviations of the mean, or approximations thereof, for the following:

0.01 percent
0.05 percent
0.10 percent
0.01 percent
0.30 percent
0.10 percent
0.01 percent
0.10 percent

(4) The limit of detection for photon-emitting impurities is:

 $0.01 \text{ y s}^{-1}\text{g}^{-1}$ between 50 and 1900 keV.

(5) The limit of detection for alpha-particle-emitting impurities is:

 $0.05 \ \alpha \ s^{-1} g^{-1}$.

(6) NCRP Report No. 58, 2nd Edition, February 1985, p. 365.

For further information please contact Dr. Larry Lucas at (301) 975-5546.

NOTES ON THE USE OF STANDARD REFERENCE MATERIAL 4919G, STRONTIUM-90

The activity of the strontium-90 in the ampoule is given per gram of solution. If transfers are made by volume, the density given on the certificate can be used to compute the activity per unit volume. The activity given is the strontium-90 activity only. Because the strontium-90 is in equilibrium with its yttrium-90 daughter, which is also a beta-particle emitter, the activity given should be doubled to get the corresponding total beta-particle-emission rate.

If the solution is to be used for making quantitative sources, it should be kept tightly sealed so the evaporation, and the consequent change in the radioactivity concentration, is minimized. Glass containers are best for storage.

Dilute solutions of strontium-90 are often assayed by liquid-scintillation counting. We recommend that carrier solution containing approximately 1 mg of non-radioactive strontium be added first to the liquid-scintillation cocktail. We typically use a carrier solution containing 4 mg of strontium p mL of 0.5- molar hydrochloric acid. When 0.25 mL of this solution is added to 10 mL of emulsion type liquid-scintillation cocktail, the resulting 1 mg of strontium per vial is generally sufficient to prevent the radioactive strontium-90 from plating out on the vial walls. A set of liquid-scintillation vials that cover a range of sample-solution masses should be prepared and monitored over several days to ensure that the efficiency is constant.

The beta-particle counting efficiency will be somewhat less than unity. A correction for the loss o low-energy beta particles can be computed using the integral-discriminator-extrapolation technique (G. Goldstein, <u>Nucleonics</u> 23 (1965) 67) or using the liquid-scintillation efficiency-tracing technique with tritium (B.M. Coursey et al, Int. J. Radiat. Isotopes 37 (1986) 403).

The activity concentration given on the certificate is as of 1200 hours Eastern Standard Time, August 9, 1990. To convert from EST to your local time, the table given below can be used.

TO CONVERT FROM EST TO:

EDT	Add	1 hour
CDT	Same as E	ST
CST.	Subtract	1 hour
MOT	Subtract	1 hour
MST	Subtract	2 hours
PDT	Subtract	2 hours
PST	Subtract	3 hours
UTC	Add	5 hours

X-12 313177 AC5351

U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory-Las Vegas Nuclear Radiation Assessment Division

Calibration Certificate

Description	Principal redignization Strontium-90 Hell-life 28.6 years
	Nominal activity 27 nano curies
	Nominal volume 5 ml in ampoule/bottle number 94003-1
Measurement	Activity of principal radionuclide
	Activity per gram of this solution
	5.40 nano corios of Strontium-90
	at 0400 hours PST on April 1, 1994
	Activity of daughter radionuclide
	The principal activity was accompanied at the quoted time by
•	5.40 nanocuries Per eram
	of the daughter nuclide Yttrium-90
	Total mass of this solution
	Approximately 5.0 grams
	Method of measurement
	The activity of the primary solution was measured

by liquid scintillation counting.

The activity of the dilution was measured by liquid scintillation counting.

Useful Life	This redienuclide has decayed through	0.0	half lives since it was obtained by EMSL-LV
	We recommend that this solution should n	on be used aft	her August 1994

This dilution was prepared for the 1994 ASTM Collaborative Study of a test method for the determination of Sr-90 in water.

Strontium-90 decays 100 pyttrium-90. Yttrium-90 a beta emission. Carrier content per gram of solution: 30 micrograms strontium	lso decays 10	
Strontium-90 decays 100 pyttrium-90. Yttrium-90 a beta emission.	lso decays 10	0 percent by
Strontium-90 decays 100 pyttrium-90. Yttrium-90 a		
•		
daughter nuclides and impurities (no allow	ance for error in these	assumptions or the
the quoted result from the true value. It is confidence limits and the worst case estime The overall uncertainty is therefore calcula	a combination of rand ate of the systematic ted on the basis of +	form error [t(sm)] at the 99.7 errors (+ å , - å ') [t(sm) + å] , - [t(sm) + å]
known uncertainty of the standard) is obtain	ned by the separate a	rithmetic summation of the
	•	
(3)	less than equal to	% of the principal activit
(2)	less than equal to	% of the principal activit
(1)	less than equal to	% of the principal activit
	(1) (2) (3) The activity of impurity (1) is not (2) is not (3) included in the quoted figures of the principal activity had a (The 99.7% confidence limits are given by the for the degree of freedom (n-1)). The maximum uncertainty due to the assess known uncertainty of the standard) is obtain positive and negative systematic error (+6+3.8%) or -3.8% the overall uncertainty (often called accurate the quoted result from the true value. It is confidence limits and the worst case estimated the overall uncertainty is therefore calculated and is +4.0%4.0% of the quoted result from the true value.	(3) less than equal to The activity of impurity (1) is not (2) is not (3) is not included in the quoted figures of the principal activity. The precision of this standard was such that the certified value of concentration of the principal activity had a standard error (sm) in (The 99.7% confidence limits are given by t(sm) where t is obtains for the degree of freedom (n-1)). The maximum uncertainty due to the assessable systematic error known uncertainty of the standard) is obtained by the separate at positive and negative systematic error (+ δ - δ '). These have be +3.8% or -3.8% the overall uncertainty (often called accuracy) is an estimate of the quoted result from the true value. It is a combination of rame confidence limits and the worst case estimate of the systematic of the overall uncertainty is therefore calculated on the basis of +

ate Certificate Prepared

Approval Signature

58E April 26, 1994 Fact B. Hahn

Signed ·

INITIAL STANDARD DILUTION RECORD

Standard Information:			
Isotope:	Sr-90	Vendor:	EPA
Activity of Standard Received:	2.7×104 uci	Vendor I.D. #	94003-1
Weight of Standard Received (g):	50	LAL I.D. #:	AC5281
Standard Activity (pCi/g):	5.4 x 103 pCi/g	NIST Traceable ?	iles
Halflife in Years or Days:	28 6 yrs	Certificate #:	94003-1
Reference Date:	4-1-1994	Receiver's Name:	K. Free
1	ŕ	Date Received:	5-3-94

Primary (Dilution
Balance Verification?:	Yes
Diluent Used:	0. M d C
a: Decay Corrected Standard Activity (pCi/g):	5.4 x 10 3 pCi/g
b: Weight of the Source Transferred (g):	4.9670 0
c: Total diluted weight (g):	49.91
d: Total Diluted Volume (mL)	50 mL
e: Activity of Dilution by Weight (pCi/g) [a * b / c]:	531.4 pci/g
f: Calculated Density of Solution (g/ml) [c / d]:	0.9982 g/mL
g: Activity of Dilution by Volume (pCi/mL) [e * f]:	536.44 pci/mL
h. Dilution Logbook I.D. #:	-93-474-81-173-474-82-1
Prepared By: James Won	f Preparation Date: $6-15-94$
Reviewed By: Ose Hitchism	Review Date: 6/30/94
Purity/Cross Check Rerformed By:	Check Date:
Muse stated,	£ 587

Signed

Date

Date

Not	ebook	: No	
	Cont	inued From Page	

SECONDARY/WORKING LEVEL STANDARD DILUTION RECORD

Dilution Source Information		
Isotope: Ref. 4-1-94 Parent Barcode Number Vendor or Certificate I.D. # of Parent Standard: Diluted Source Logbook I.D. #: Balance Verification?: Diluent Used:	Sr-90 AC5281 EPA 94003-1 93-414-82-1 Yes 0.1 M HC1	
	Dilution	
	0/MHCI N/A 536.44 pCi/mls 0018 9 00.20 9 N/A N/A 26.78 pCi/ml	
Prepared By: Reviewed By: #If the diluent remains unchanged from the diluent used for the	Preparation Date: 3-2-95 Review Date: 3/3/95 Redilution source, then a weight dilution of a volume unit source at changes, a weighted proportion density conversion is necessary.	

Date

Signed

CERTIFICATE OF CALIBRATION BETA STANDARD SOLUTION

Radionuclide

Tc-99

Customer: LOCKHEED ENGINEERING & SCIENCES Co.

Half Life:

 $(2.13 \pm 0.05) \times 10^{\circ}5$ years

P.O.No.:

06LAB1036

Catalog No.:

7099

Reference Date:

September 1 1991

91 12:00 PST.

Source No.:

389-22-1

Contained Radioactivity:

1.003

μCi.

Description of Solution

a. Mass of solution:

4.9929

NH4TcO4 in 0.1M NH4OH

prose.

b. Chemical form:
c. Carrier content:

None added 0.9974

gram/ml @ 20°C.

Radioimpurities

d. Density:

None detected

Radioactive Daughters

None

Radionuclide Concentration

0.201

μCi/gram.

Method of Calibration

Weighed aliquots of the solution were assayed using a liquid scintillation counter.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

±2.1%

b. Random uncertainty in assay:

+1.0%

c. Random uncertainty in weighing(s):

+0.0%

d. Total uncertainty at the 99% confidence level:

±3.1%

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Notes

- 1. Nuclear data were taken from "Table of Isotopes", Seventh Edition, edited by Virginia S. Shirley.
- 2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay(and later NIST certification) of Standard Reference Materials. (As in NRC Regulatory Guide 4.15)

QUALITY CONTROL

ISOTOPE PRODUCTS LABORATORIES

1800 No. Keystone Street., Burbank, California 91504

(818) 843 - 7000

CERTIFICATE OF CALIBRATION BETA STANDARD SOLUTION

Radionuclide

Tc-99

Customer: LOCKHEED ENGINEERING & SCIENCES Co.

Half Life:

 $(2.13 \pm 0.05) \times 10^{-5}$ years

P.O.No.:

06LAB1036

Catalog No.:

7099

Reference Date:

September 1 1991

Source No.:

389-22-1

Contained Radioactivity:

1.003

μCi.

12:00 PST.

Description of Solution

a. Mass of solution:

4.9929

b. Chemical form:

NH4TcO4 in 0.1M NH4OH

grams.

c. Carrier content:

None added

gram/mi @ 20°C.

d. Density:

0.9974

Radioimpurities

None detected

Radioactive Daughters

None

Radionuclide Concentration

0.201

μCi/gram.

Method of Calibration

Weighed aliquots of the solution were assayed using a liquid scintillation counter.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

+2.1%

b. Random uncertainty in assay:

±1.0%

c. Random uncertainty in weighing(s):

±0.0%

d. Total uncertainty at the 99% confidence level:

+3.1%

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Notes

- 1. Nuclear data were taken from "Table of Isotopes", Seventh Edition, edited by Virginia S. Shirley.
- 2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay(and later NIST certification) of Standard Reference Materials. (As in NRC Regulatory Guide 4.15)

QUALITY CONTROL

ISOTOPE PRODUCTS LABORATORIES

1800 No. Keystone Street., Burbank, California 91504

(818) 843 - 7000

AA6047

Isotope: Tc - 99	Vendor:
Total Received Activity: ~	Vendor ID: 369-22 -
Wt. Received: 25 g NIST Traceat	DIEN Cert. # implicatly
Activity in Units/g: 0.20/4/	Reference Date: 9-1-9
Activity converted (dpm/g):dpm/g	Receive Date: 12-23-W/A 10-30-19
Halflife (Yrs or days) $t\% = 2.13 \times 10^{-4}$	Receiver's Name: Name: 123-45
PRIMARY DILUTION: Balance wt.	check done (V)
a: Source activity: 2.0 X (0 p Ci / g	dern/g (if t½ = < 100yr decay to prep. date)
b: Wt. of Source transfered: 4.9320 g	g
Diluent used: 0.1 M NH40 H	•
c: Total diluted weight 100 ml	_s ru
d: Activity of dilution (a*b/c): N/A	dpm/g
e: Calculated density of solution:	g/mL (4M HNO ₃ = 1.1294 ± .0007 g/mL)
f: Activity by volume = (d*e): 9910 pc /ml	dpm/mL fw
Dilution Log Book ID: 91-225-41-1	-
1 - 0 0 -	
Preparation Date: 1-23-92 Preparer's Name.	oe Hutchinson
Preparation Date: 1-23-92 Preparer's Name. SECONDARY OR WORKING LEVEL DILUTION	Balance wt. check done (_)

SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: 91-225-42-1	***************************************
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: 91-225-42-1	Balance wt. check done ()
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: 91-225-42-1 a: Source activity: 9910 pc./mL	Balance wt. check done () dpm/g * (if t½ = < 100yr decay to prep. date)
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: 91-225-42-1 a: Source activity: 9910 pc./mL b: Wt. of Source transfered: 1.00511	Balance wt. check done () dpm/g * (if t½ = < 100yr decay to prep. date)
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: 91-225-42-1 a: Source activity: 9910 pc./mL b: Wt. of Source transfered: 1.00513 Diluent used: 0.1m AH4 3H	Balance wt. check done () dpm/g * (if t½ = <100yr decay to prep. date) g
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: 91-225-42-1 a: Source activity: 9910 pc./ml. b: Wt. of Source transfered: 1.00511 Diluent used: 0.1m #H4 0# c: Total diluted weight: 50.621 d: Activity of dilution (a*b/c): N/A e: Calculated density of solution: 497 g/m.	Balance wt. check done () dpm/g * (if t½ = < 100yr decay to prep. date) g
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: 91-225-42-1 a: Source activity: 9910 pc./ml b: Wt. of Source transfered: 1.00511 Diluent used: 0.1m #H4 3# c: Total diluted weight: 50.621 d: Activity of dilution (a*b/c): N/A e: Calculated density of solution: 491 g/m. Axb/c f: Activity by volume = 1d*el: 196.8	Balance wt. check done () dpm/g * (if t½ = <100yr decay to prep. date) g dpm/g dpm/g g/mL (4M HNO ₃ = 1.1294 ± .0007 g/mL)
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: 91-225-42-1 a: Source activity: 9910 pc./ml. b: Wt. of Source transfered: 1.00511 Diluent used: 0.1m #H4 0# c: Total diluted weight: 50.621 d: Activity of dilution (a*b/c): N/A e: Calculated density of solution: 497 g/m.	Balance wt. check done () dpm/g * (if t½ = < 100yr decay to prep. date) g dpm/g g/mL (4M HNO ₃ = 1.1294 ± .0007 g/mL) pc_t/m_L dpm/mL

SECONDARY / WORKING LEVEL STANDARD DILUTION RECORD

Dilution Sou	rce Mormation (* 1875)
Isotope:	Tc-99
From NIST traceable standard?:	Implicitly
Vendor or Certificate I.D. # of parent standard:	ADDY 7
Diluted source logbook I.D. #: "	91-225-41-1
Balance verification?:	- INES
Diluent used:	0.1M NH40H

Di	llution 🛔
*Diluent:	0.1 M NH40H
*Density of diluent (g/ml):	N/A
a. Parent standard activity:	99/0 pCi/ml
b. Amount of standard transferred:	Q.8759/ g
c. Total amount of dilution:	254 69 ox
d. Activity of dilution [a * b / c]:	111.90 Li/ml as of 9-1
Dilution logbook I.D. #:	93-474'-96-1
Prepared by: Janes Won	Preparation date: 8-17-94
Reviewed by: 12 74 11	Review date: 8/25/94

If the diluent remains unchanged from the diluent used for the dilution source, then a weight dilution of a volume unit source can be performed without a density conversion. If the diluent changes, a weighted proportion density conversion is necessary.

LAL-91-SOP-0174

96 13428. 1520

SECONDARY / WORKING LEVEL STANDARD DILUTION RECORD

Isotope:	Tc-99
From NIST traceable standard?:	Implicitly
Vendor or Certificate I.D. # of parent standard:	AA004T
Diluted source logbook I.D. #:	91-225 -41 -1
Balance verification?:	us
Diluent used:	OI M NHYOH

	Dilution
*Diluent:	. 0.1 M NH40H
*Density of diluent (g/ml):	N/A
a. Parent standard activity:	99/0 pCi/ml
b. Amount of standard transferred:	1.9605 a
c. Total amount of dilution:	166.25 2
d. Activity of dilution [a * b / c]:	116.86 pci/ml as of 9-1-1991
Dilution logbook I.D. #:	93-474 - 97-1
Prepared by: Pyw Wm	Preparation date: 8-17-94
Prepared by: The Wm Reviewed by: The Hilliam	Review date: 8/25/54

If the diluent remains unchanged from the diluent used for the dilution source, then a weight dilution of a volume unit source can be performed without a density conversion. If the diluent changes, a weighted proportion density conversion is necessary.

LAL-91-SOP-0174

THIS IS A PHOTOCOPY OF THE CERTIFIC

REC'D 3/29,
WHICH IS BEING MAILED TO YOU UNDET

SEPARATE COVER.

National Bureau of Standards

Certificate

Standard Reference Material 4288

Radioactivity Standard

Radionuclide

Technetium-99

Source identification

4288-83

Source description

Liquid in NBS borosilicate-glass

ampoule

Solution composition

59.31 μg of Tc(VII) as potassium pertechnetate per gram of approx-

imately 0.001 molar KOH (1)

grams

Mass

4.910

Radioactivity concentration

 $3.759 \times 10^4 \text{ Bg g}^{-1}$

Reference time

November, 1982

Measuring instrument

Liquid-scintillation counter (2)

Random uncertainty

0.27 percent (3)

Systematic uncertainty

1.35 percent ⁽⁴⁾

Total uncertainty (Random plus systematic)

1.62 percent

Photon-emitting impurities

None observed (5)

Half life

 $(2.111 \pm 0.036) \times 10^5 \text{ years}$ (6)

This Standard Reference Material was prepared in the Center for Radiation Research, Nuclear Radiation Division, Radioactivity Group, Dale D. Hoppes, Group Leader.

Washington, D.C. 20234 November, 1982 George A. Uriano, Chief Office of Standard Reference Materials

FOOTNOTES

- The KTcO₄ was prepared by M.W. Heitzmann of the U.S. Food and Drug Administration from NH₄TcO₄ obtained from Oak Ridge National Laboratory. The solution density is 0.998 g cm⁻³ at 21.8°C, and the KTcO₄ concentration is 0.00060 molar. The UV spectrum of this material exhibited only the characteristic doublets at 243 and 287 nm (A).
- (2) Two liquid-scintillation counters were calibrated using the method of J.A.B. Gibson (B,C,D). Three different radionuclides were used as the standard: ³H, ¹⁴C, and ⁶⁰Co. The results obtained using the three radionuclides agreed to within 0.32 percent. The ¹⁴C result was used for confirmation only. The value given here is the unweighted mean of the ³H and ⁶⁰Co results.
- (3) Half the 99-percent confidence interval for the average of the ³H result and the ⁶⁰Co result. The standard deviation of the mean of the ³H result is 0.15 percent based on 6 degrees of freedom, and the standard deviation of the mean of the ⁶⁰Co result is 0.09 percent based on 9 degrees of freedom.
- (4) The systematic uncertainty is the average of that for the ³H result, 1.20 percent, and that for the ⁶⁰Co result, 1.49 percent. These values are linear sums of estimated upper limits of uncertainties due to the following:

	3 _H	60 _{Co}
 a) reference material for standard radionuclide 	0.63	0.68
b) source preparation	0.07	0.17
c) theoretical model	0.30	0.20
d) gamma-ray contribution to beta-particle detector		0.24
e) quenching	0.10	0.10
f) interpolation from calibration curve	0.10	0.10
	1.20	1.49

(5) The master solution from which these standards were prepared was examined with germanium gamma-ray spectrometers and no impurity was found. Limits of detection as a ratio of gamma-ray-emission rate to technetium-99 activity are

1 x 10⁻⁶ between 90 and 300 keV 1 x 10⁻⁷ between 300 and 1900 keV.

NBS-measured half life based on the formula $T_k = N \ln(2)/A$, where N is the number of atoms, computed using an atomic mass for technetium-99 of 98.906254 \pm 0.000002 grams and the gravimetrically determined mass of technetium-99, and A is the activity determined by liquid-scintillation counting. The value recommended by the Oak Ridge Nuclear Data Project is (2.13 \pm 0.05) x 10⁵ years. (E)

[≠] References on last page

The following individuals and organizations contributed to the characterization of this Standard Reference Material.

J.A.B. Gibson
Atomic Energy Research Establishment
Environmental and Medical Sciences Division
Harwell
United Kingdom

M.W. Heitzmann
U.S. Food and Drug Administration
Division of Drug Chemistry
Washington, D.C.

J.C. Leak
U.S. Food and Drug Administration
Division of Oncology and
Radiopharmaceutical Drug Products
Rockville, MD

For further information please contact Dr. Bert M. Coursey at (301) 921-2383.

REFERENCES

- A. Boyd, G.E., <u>J. Chem. Ed.</u>, <u>36</u>, 3 (1959).
- B. Gale, H.J. and Gibson, J.A.B., Atomic Energy Research Establishment Report AERE-R5067 (1965), Harwell, United Kingdom.
- C. Gibson, J.A.B. and Marshall, M., <u>Int. J. Appl. Radiat. Isotopes</u>, 23, 321 (1972).
- D. Gibson, J.A.B., Computed counting efficiencies as a function of merit figure for 14 beta-particle-emitting radionuclides (July, 1980). Unpublished data.
- E. Kocher, D.C., Radioactive Decay Data Tables DOC/TIC-11026, p. 108 (1981). Available from NTIS, Springfield, VA.

9613428 1524 ISOTOPE WEIGHT DILUTION RECORD

	A)
isotope: 1 C - 9 9	Vendor: NIST :
Total Received Activity: 1.85 E 5 Bg	Vendor ID: 4288
	ie <u>Y / N</u> Gert. # 4288 - 83
Activity in Units/g: 3,759 X10 Bala x 60/2,22 = 1:016 E 6 Pe./a Activity converted (dpm/g): 4.988 x10 Cpc. dpm/g	Reference Date: Nov 1982 Receive Date: 3-30-1992
Halflife (Yrs or days) th = 2.11 ESYrs	Receiver's Name: T. Marales
	heck done
a: Source activity: 1.016 & 6' PC1/9	ि । (if t½ = <100yr decay to prep. date)
b: Wt. of Source transfered: 4.86 98	
Diluent used:O, I m NH4OH	Oilatel
c: Total diluted weight: 146.81	_9
d: Activity of dilution (a*b/c): 3.37 £ 4 PC	Yapmin rys
e: Calculated density of solution: 9956	g/mL (4M+INO) U.S. Department of Commerce
f: Activity by volume = (d*e): 3.355 &4	PCI/ML National Institute of Standards and Technology AL0129
Dilution Log Book ID:	99-
Preparation Date: 6/6/93 Preparer's Name.	Date November 1, 1982
Preparation Date: 6/6/93 Preparer's Name. SECONDARY OR WORKING LEVEL DILUTION	Date November 1, 1982 SRM 4288
	Date November 1, 1982 SRM 4288 CAUTION RADIOACTIVE Balance wt. check gone :
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: Lac 92-353	Date November 1, 1982 SRM 4288 CAUTION RADIOACTIVE Balance wt. check gone 1 -/
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: Lac 92-353 a: Source activity: 3.355 & 4	Date November 1, 1982 SRM 4288 CAUTION RADIOACTIVE Balance wt. check gone :
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: Lac 92-353 a: Source activity: 3.355 & 4 b: Wt. of Source transfered: 2.3211	Date November 1, 1982 SRM 4288 CAUTION RADIOACTIVE Balance wt. check gone 1 -/
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: Lac 92-353 a: Source activity: 3.355 & 4	Date November 1, 1982 SRM 4288 CAUTION RADIOACTIVE Balance wt. check gone 1 -/
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: Lac 92-353 a: Source activity: 3.355 & 4 b: Wt. of Source transfered: 2.3211 Diluent used: 0.1 m NH4 0H c: Total diluted weight: 71.89	Date November 1, 1982 SRM 4288 CAUTION RADIOACTIVE Balance wt. check gone 1 -/
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: Lnc 92-353 a: Source activity: 3.355 & 4 b: Wt. of Source transfered: 2.3211 Diluent used: 0.1 m NH4 0H c: Total diluted weight: 71.89 d: Activity of dilution (a*b/c):	Date November 1, 1982 SRM 4288 CAUTION RADIOACTIVE Balance wt. check gone 1 -/
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: Lac 92-353 a: Source activity: 3.355 & 4 b: Wt. of Source transfered: 2.3211 Diluent used: 0.1 m NH4 0H c: Total diluted weight: 71.89	Date November 1, 1982 SRM 4288 CAUTION RADIOACTIVE Balance wt. check gone 1 -/
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: Lnc 92-353 a: Source activity: 3.355 & 4 b: Wt. of Source transfered: 2.3211 Diluent used: 0.1 m NH4 0H c: Total diluted weight: 71.89 d: Activity of dilution (a*b/c): MA e: Calculated density of solution: MA	Date November 1, 1982 SRM 4288 CAUTION RADIOACTIVE Balance wt. check gone 1
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: 92 - 353 a: Source activity: 3.355 & 4 b: Wt. of Source transfered: 2.321(Diluent used: 0.1 m NH+ 0H c: Total diluted weight: 71.89 d: Activity of dilution (a*b/c): A e: Calculated density of solution: NA f: Activity by volume = (d*e): / 0.83	Date November 1, 1982 SRM 4288 CAUTION RADIOACTIVE Balance wt. check gone 1 Oci/m(L dpm/g - (if t) = <100yr decay to prep. date) g/mL (4M HNO; = 1.1294 ± .0007 g/mL) //L dpm/mL (4) Date:
SECONDARY OR WORKING LEVEL DILUTION Log Book ID of source being diluted: Lac 92-353 a: Source activity: 3.355 & 4 b: Wt. of Source transfered: 2.321(Diluent used: 0.1 m NH off c: Total diluted weight: 71.89 d: Activity of dilution (a*b/c): 44 e: Calculated density of solution: 10.83 pci f: Activity by volume = (d*e): 10.83 pci Dilution Log Book ID: Lat 92-353-100-2	Date November 1, 1982 SRM 4288 CAUTION RADIOACTIVE Balance wt. check gone 1 Oci/m(L dpm/g - (if t) = <100yr decay to prep. date) g/mL (4M HNO; = 1.1294 ± .0007 g/mL) //L dpm/mL (4) Date:

9613428.1525 SECONDARY/WORKING LEVEL STANDARD DILUTION RECORD

Dilution Source Information		
Isotope:	Tc-99	
Parent Barcode Number	AA0128	
Vendor or Certificate I.D. # of Parent Standard:	SRM 4288	
Diluted Source Logbook I.D. #:	92-353-(00-)	
Balance Verification?:	<u>uls</u>	
Diluent Used:	DIH NH40H	

Dilution		
*Diluent:	O.IH NHYOH	
*Density of diluent (g/ml):	0.9956 g/ml	
a: Parent Specific Activity:	3.355 E4 DEily PCi/ml	
b: Amount of Source Transferred:	36.0938	
c: Total amount of Dilution:	123.36 g	
d: Total Volume of Dilution:	N/A mi	
e: Activity of Dilution [a * b / c]:	N/A pCi/g	
f: Activity of Dilution (a * b / d):	9816.37 pCi/ml	
Dilution Logbook I.D. #: 94-677 - 17 - 1		
Prepared By: Types Word Preparation Date: 11-16-94		
Reviewed By: De Hitch	Review Date:	
*If the diluent remains unchanged from the diluent used for the dilution source, then a weight dilution of a volume unit source		
can be performed without a density conversion. If the diluent changes, a weighted proportion density conversion is necessary.		

NOTES

- The uncertainty analysis methodology and nomenclature used for the reported uncertainties are based on uniform NIST guidelines and are compatible with those adopted by the principal international metrology standardization bodies [cf., B.N. Taylor and C.E. Kuyatt, NIST Technical Note 1129 (1993)].
- The combined standard uncertainty, $u_e = 0.32$ percent, is the quadratic combination of the standard deviation (or standard deviation of the mean where appropriate), or approximations thereof, for the following component uncertainties:

a)	11 liquid-scintillation measurements on each of	
·	4 vials	0.11 percent
b)	gravimetric	0.05 percent
c)	calibration of SRM 4926D	0.29 percent
ď)	background	0.00 percent
c)	half life	0.03 percent

The expanded uncertainty, U = 0.64 percent, is obtained by multiplying u_e by a coverage factor of k = 2 and is assumed to provide an uncertainty interval of at least 95% confidence.

- ⁽⁵⁾ Overall uncertainty reported by EMSL.
- ⁽⁴⁾ The limit of detection for photon-emitting impurities is:

 $0.08 \ \gamma \ s^{-1}g^{-1}$ for energies between 90 and 2700 keV.

- Unterweger, M.P., Coursey, B.M., Schima, F.J., and Mann, W.B., Int. J. Appl. Radiat. Isot., 34, 611 (1980).
- This result demonstrates the traceability of EMSL to NIST, for this measurement, to within five percent as specified in the appendix, <u>Traceability Studies</u>, of the EPA-NIST interagency agreement of April 1976, as amended.

INITIAL STANDARD DILUTION RECORD

St.	andard In	formation:		
· H-3		Vendor:	EPA	
	uCi <	Vendor 1.0. # 547/95		
		LAL I.D. #:	AC 5299	
21.9	DC1/G	がいる Traceable ?	Yes	
12.43	yrs	Certificate #:	26¢6-1	
0400, 6/3/	92	Receiver's Name:	Kevin Free	
		Date Received:	-1/25/95	
Primary Dilution				
	H-3 .11 5 21.9 12.43	H-3 .11 uCi 5 a nC/6 21.9 pC/6	H-3 Vendor: 11 uCi Vendor I.D.	

Primary	Dilution : 3/1/2
Balance Verification?:	Yes
Diluent Used: EPA	Distilled ASTM TypeII Water (Dead Water)
6:/ Decay Corrected Standard Activity (pCi/g):	21.9 n C/2 -4-939 1/2 pCi/g on 6/3/92
b: Weight of the Source Transferred (g):	4.939
c: Total diluted weight (g):	49 · 377
i: Total Diluted Volume (mL)	545 495 mL
e: Activity of Dilution by Weight (pCi/g) [a ° b / c]:	2190 pCi/g
: Galculated Density of Solution (g/ml) [c / d]:	0.99777 g/mL
: Activity of Dilution by Volume (pCi/mL) [e * f]:	2190 pci/ml on 6/2/92
1. Dilution Logbook I.D. #: C. Pernew	LAL-95-0721-1
Prepared By: Jeet tutching 15. Mo	Preparation Date: 2/7/95
Reviewed By: Joe Helman	/ C. Poriumaz Review Date: <u>2/7/95</u>
Purity/Cross Check Performed By:	Check Date:661

Signed

Date

CP5/8/95 Signed

Date

12 , PROJ!	ест н-39665428, 152	Notebook No072 Continued From Page	
		DARY/WORKING LEVEL ARD DILUTION RECORD	
	Di	lution Source Information	
-	Isotope:	H-3 LCS	
	Parent Barcode Number	AC 5299	.]
-	Vendor or Certificate I.D. # of Parent St	andard: 2606-1	
+-	Diluted Source Logbook I.D. #:	LAL - 35 - 721 - 1	1 1
	Balance Verification?:	Hot Yes De 2d water	
	Diluent Used:	De 2d water	
- -		Dilution	
+	*Diluent:	EMA Dead Witer	
++	Density of diluent (g/ml):	0.99	
	a: Parent Specific Activity:	2190 pc/nl	. #
+-	b: Amount of Source Transferred:	5-0 m _ O Glass Class A pipi	r
++	c: Total amount of Dilution:	4000 ml gt	
	d: Total Volume of Dilution:	4000 ml	
-	e: Activity of Dilution [a * b / c]:	2.710 pci/ml e 6/3/92	
	f: Activity of Dilution (a * b / d):		
	Dilution Logbook I.D. #:	95-721-12-1	
	Prepared By:	Preparation Date: 6/26/95	
$\left \cdot \right $	Reviewed By: Goe Authur	Review Date: <u>6/26/95</u>	
		used for the dilution source, then a weight dilution of a volume u I the diluent changes, a weighted proportion density conversion	
,	•	Read and Understood By	662
	Signed Date	Signed	Date

: : .:

JECT9613428.1529		Notebook No Continued From Page		
		//WORKING LEV's _, DILUTION RECORD		
	Dilution S	Source Information		
Isotope:		H-3+CS MS AC 5299		
Parent Barcod	e Number	AC5299		
Vendor or Ce	rtificate I.D. # of Parent Standard:	•		
Diluted Sourc	e Logbook I.D. #:	95-0721-1		
Balance Verifi	cation?:	Yes		
Diluent Used:		Deal WATER		
		Dilution	\$	
*Diluent:		Low Bly WATER		
*Density of di	luent (g/ml):	g/ml		
a: Parent Spe	cific Activity:	2/90 pCi/g		
b: Amount of	f Source Transferred:	/0, ○ g		
c: Total amoi	unt of Dilution:	/00 g		
d: Total Volum	ne of Dilution:	loo mi		
e: Activity of	Dilution (a * b / c):	pCi/g		
f: Activity of C	Dilution (a * b / d):	219 pCi/ml on 6/3/52	-	
Dilution Logbo	ook I.D. #:	94-0677-70		
Prepared By:	No #11	Preparation Date: 6/23/95		

'If the diluent remains unchanged from the diluent used for the dilution source, then a weight dilution of a volume unit source can be performed without a density conversion. If the diluent changes, a weighted proportion density conversion is necessary.

nead and Understood By

663

6/23/95

Signed Date Signed Date

Review Date:

U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory-Las Vegas Nuclear Radiation Assessment Division

Calibration Certificate

Description	Principal redionactide Tritium (H-3) Nominal activity 110 nano curies Nominal volume
	5 min ambour 2606-1
Measurement	Activity of principal radionuclide
	Activity per gram of this solution 21.9 nano curies of Tritium at 0400 hours PST on June 3, 1992
	Activity of daughter radionuclide
	The principal activity was accompanied at the quoted time by curies Per gram of the daughter nuclide
	Total mass of this solution areas APPROX. 5.0
	Method of measurement :-
	The activity of the primary solution and this dilution were measured by liquid scintillation counting.
. •	Counting efficiencies for both standardizations were determined by counting solutions directly traceable to the National Institute of Standards Technology (NIST).
. •	
Useful Life	This redienuclide has decayed through 0.0 half tives since it was obtained by EMSL-LV We recommend that this solution should not be used after December 1999

	Preservative:		
of Solution	100 percent H ₂ O	Bari Lead	um less than 0.004 per less than 3x10 ⁻⁵ per
Chemical Composition	Carrier content per gram of solution:		components:
-	maximum energy is 18.6		
Decay Schemes	This standardization is based on the fordaughter nuclides and impurities (no a assumption of quoted half-life have be Tritium decays 100 percentages.	llowance for error in the en included in the state	ese assumptions or the ment of accuracy above).
		It is a combination of restimate of the systematiculated on the basis of the quoted radioactive co	andom error [t(sm)] at the 99.7% ic errors (+8, -8') + [t(sm) +8], - [t(sm) +8] oncentration.
·	The maximum uncertainty due to the a known uncertainty of the standard) is consitive and negative systematic error + 2.9 % or -2.9 %	obtained by the separate	arithmetic summation of the
	(The 99.7% confidence limits are given for the degree of freedom (n-1)).	by t(sm) where t is obta	sined from the student t factor
	The precision of this standard was succentration of the principal activity h	_	,
Random Errors	The contains of this considered one of	h shas sha manifind and	and all a condition as
	The activity of impurity (1) is not (2) is not included in the quoted figures of the prin	• •	
	(3)	less than equal to	% of the principal activity
	(2)	less than equal to	% of the principal activity
	(1) none	less than equal to	% of the principal activity
Purity	The manufacturer states that activities of and of its daughter nuclides, if any, were		

Date Certificate Prepared

Heorge J

658

Approval Signature

U.S. DEPARTMENT OF COMMERCE National Institute of Standards & Technology Gaithersburg, MD 20899.

REPORT OF TRACEABILITY

U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory Las Vegas, Nevada

Radionuclide

Hydrogen-3

Source identification

2606-1, prepared by EMSL

Source description

Liquid in 5-mL flame-sealed glass ampoule

Source mass .

Approximately 5.0 grams

Source composition

Hydrogen-3 in water

Reference time

0700 EST June 3, 1992

NIST DATA	EMSL DATA
810.5 Bq g ⁻¹	810.3 Bq g ⁻¹
0.64 percent (L2)*	4.3 percent (3)
None observed (9)	None observed
4πβ liquid-scintillation counters calibrated with SRM 4926D	Liquid-scintillation counting
$12.43 \pm 0.05 \text{ years}^{(5)}$	
	810.5 Bq g ⁻¹ 0.64 percent (L2)* None observed (*) 4πβ liquid-scintillation counters calibrated with SRM 4926D

Difference from NIST

-0.05 percent (6)

For the Director.

Gaithersburg, MD 20899 January 1994

J.M. Robin Hutchinson, Acting Group Leader Radioactivity Group

Physics Laboratory

The Artetion

*Notes on next page

National Institute of Standards & Technology

THIS IS A PHOTOCOPY OF Life Control CATE

Certificate

WHICH IS COMES MAILED TO YOU UNDER

SEPARATE CONTR.

Standard Reference Material 4927D Radioactivity Standard

Radionuclide

Hydrogen-3

Source identification

SRM 4927-D

Source description

3H-water flame-sealed in

NBS glass ampoule (1)*

Volume

3 mL

Radioactivity concentration

 $6.286 \times 10^5 \text{ Bq g}^{-1}$

Reference time

1200 EST January 1, 1989

Overall uncertainty

0.82 percent (2)

Measuring instrument

 $4\pi B$ liquid-scintillation

counter (3)

Half life

 $12.43 \pm 0.05 \text{ years}^{(4)}$

This Standard Reference Material was prepared in the Center for Radiation Research, Nuclear Radiation Division, Radioactivity Group, Dale D. Hoppes, Group Leader.

Gaithersburg, MD 20899 January, 1989 Stanley D. Rasberry, Chief Office of Standard Reference Materials

*Notes on back

ISOTOPE SECONDARY/WORKING LEVEL DILUTION RECORD

ISOTOPE SECONDARY/WORKING LEVEL DILUTION RECORD
Secondary/Working Level Dilution Date: 4/15/93 Preparer's Name: 5 12.43 yr.
Volumetric Gravimetric Method (Circle One) Pouble checked 79,
Pipet Check / Balance Wt. Check Done
Diluted Source ID (log#): 91-225-1 NIST 1st Princy Dil from SR m - 4727
Diluent used: O.E. Water Rec. Oate JAN 1, 1989
A: Source activity: 0.5 pc:/mL
B: Amount of source transferred: 3.710 Bg
C: Total amount of dilution: 1003.00
D: Activity of dilution (A*B/C):
Dilution Log Book ID: $92 - 353 - 98 - 1$ Reviewed by: $735/65$ Date: $6/15/93$
Decayed to 6/15/93 1881 pci/ml (17798)
e-At = .7198 = 1467 pei/mL
= 3256 dom/ml on 6-15-13.

Los Alamos Technical Associates, Inc.

8633 Gage Blvd. / Kennewick, WA 99336 / Telephone (509) 783-4369 / FAX (509) 783-9661

September 13, 1995 LATA95-179

Ms. Joan Kessner Bechtel 345 Hills Richland, WA 99352

Subject: VB403.86, SDG LK4838-LAS

Dear Ms. Kessner:

Attached is the data validation report for analytical results for 100-HR-3 Round 9, (SDG LK4838-LAS). The package was received by Los Alamos Technical Associates on August 25, 1995.

If you have any questions, please feel free to contact me.

Sincerely,

Narghan C Wills

Marsha C. Webb Deputy Project Manager

Attachment

cc: Jeanette Duncan, CH2M Hill Don Smith, LATA

VB403.86 MCW/lb

ln

DATA VALIDATION REPORT for 100-HR-3 GROUNDWATER ROUND 9 PHASE 1 Metals Analysis SDG LK4838-LAS LATA VB403.86

Bechtel Hanford Inc. P.O. Box 969 Richland, Washington

September 13, 1995

9613428, 1537

Table of Contents

Data Validation Narrative	00002
INTRODUCTION 0	00002
ANALYSES REQUESTED	00002
DATA QUALITY OBJECTIVES	00002
REFERENCES 0	
GLOSSARY OF VALIDATION APPLIED QUALIFIERS (CHEMISTRY) 0	
GLOSSARY OF LABORATORY APPLIED QUALIFIERS0	00006
Qualification Summary Table0	00007
	00000
Data Summary Table	00009
Sample Results	00011
sample Results	00011
Checklist	00014
	00021
Laboratory Case Narrative	00028
•	
Chain-of-Custody Information	00031
Supplemental Information	00034
END OF PACKAGE	00036

100-HR-3 GROUNDWATER ROUND 9 PHASE 1 Data Validation Narrative

INTRODUCTION

All samples in Sample Delivery Group (SDG) LK4838-LAS (VB403.86) were validated at level D as defined in the Data Validation Procedures for Chemical Analysis (WHC-SD-EN-SPP-002, Rev. 2).

The analyses were performed by Lockheed Analytical Services.

ANALYSES REQUESTED

See Table 1.

DATA QUALITY OBJECTIVES

Precision: Goals for precision were met.

Accuracy: Goals for accuracy were met.

Sample Result Verification: All sample results were supported in the raw data.

Detection Limits: Detection limit goals were met for all sample results as specified

in the RCRA Facility Investigation/Corrective Measures Study Work Plan for the 100-HR-3 Operable Unit, DOE/RL 88-36, Rev.

0.

Completeness: The data package was 100% complete for all requested analyses.

MAJOR DEFICIENCIES

No major deficiencies were identified during data validation which required qualification of data as unusable.

MINOR DEFICIENCIES

Minor deficiencies were identified during validation which required qualification of data as estimated. See the "Qualification Summary Table".

7613428 1539 Table 1 Chain-of-Custody Analysis Request

LATA ID #: VB403.86

SDG: LK4838-LAS

	Sample Information					Requested
SAMPLE	DATE			FIELD QC		:
NO.	COLLECTED	MATRIX	SAF	INFO	1	2
B0G079	27-Jun-95	WATER	B95-067	Split of B0G041	Х	
B0G080	27-Jun-95	WATER	B95-067	Split of B0G042		X

Method References:

	Analysis	_	Method	
1.	ICP Metals (Unfiltered)	_	6010	
2.	ICP Metals (Filtered)		6010	

NOTES: (complete documentation of these notes can be found in the Supplemental Information Section of this report) NOTE 1:

Samples were stored for twelve hours in a refrigerator with temperatures of 7-8 degrees Celsius. See ROD 95-0040. The sample data is unaffected.

9613428.1540

REFERENCES

WHC 1993, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 2, Westinghouse Hanford Company, Richland, Washington.

DOE 1992, RCRA Facility Investigation/Corrective Measures Study Work Plan for the 100-HR-3 Operable Unit, DOE/RL 88-36, Rev. 0, Department of Energy-Hanford, Richland, Washington.

9613428.1541

GLOSSARY OF VALIDATION APPLIED QUALIFIERS (CHEMISTRY)

Qualifiers which may be applied by data validators in compliance with the procedures herein are as follows.

- U- Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.
- UJ- Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a QC deficiency identified during data validation, the associated quantitation limit is an estimate.
- J- Indicates the compound or analyte was analyzed for and detected. The associated concentration is an estimate, but the data are usable for decision making purposes.
- BJ- Applied to inorganic analyses only. Indicates the analyte concentration was greater than the IDL but less than the CRDL and is considered an estimated value.
- UR- Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data are unusable due to an identified QC deficiency.

GLOSSARY OF LABORATORY APPLIED QUALIFIERS

Qualifiers which may be applied by the laboratory in compliance with applicable requirements are as follows.

Commonly used laboratory metals (inorganic) qualifiers:

- U- Indicates the analyte was analyzed for but not detected in the sample.
- B- Indicates the analyte concentration is less than the CRDL but greater than the IDL.
- E- Indicates the value reported is estimated due to the presence of interference.
- M- Indicates duplicate injection precision criteria were not met during graphite furnace (GFAA) analysis.
- N- Indicates spiked sample recovery was not within the control limits.
- S- Indicates the reported value was determined by the Method of Standard Additions (MSA).
- W- Indicates post-digestion spike for GFAA analysis is outside control limits and the sample absorbance is less than 50% of the spike absorbance.
- *- Indicates duplicate analysis was not within control limits.
- +- Indicates the correlation coefficient (r) for the MSA was less than 0.995.

Qualification Summary Table

9613428.1544

Qualification Summary Table

Inorganics (Metals/Cyanide)

ANALYTE	TYPE	QUALIFIER	SAMPLES AFFECTED	DQO	REASON
Aluminum	MINOR	U	B0G079	BLANKS	Calibration blank value is positive and outside acceptance criteria.
Chromium	MINOR	U	B0G079 B0G080	BLANKS	Calibration blank value is positive and outside acceptance criteria.
Manganese	MINOR	U	B0G079	BLANKS	Calibration blank value is positive and outside acceptance criteria.
Selenium	MINOR	· U	B0G080	BLANKS	Calibration blank value is positive and outside acceptance criteria.
Thallium	MINOR	ΩĴ	B0G079 B0G080	BLANKS	Calibration blank value is negative and outside acceptance criteria.
Chromium	MINOR	J	B0G079	BLANKS	Preparation blank value is negative and outside acceptance criteria.

Comments:

- 1. The samples were stored for 12 hours in a refrigerator with temperatures of 7-8 degrees Celsius. Sample data is unaffected.
- 2. The following field splits were identified: B0G041/B0G079 and B0G042/B0G080. The field splits will be evaluated in SDG# W0607-QES, (LATA ID # VB403.91).

Data Summary Table

9613428, 1546 METALS DATA SUMMARY TABLE

LATA ID#:	VB403.86	HEIS #:	B0G07	9	B0G080		
		Date:	27-Jun-	95	27-Jun-95		
	·	Matrix:	WATER		WATER		
Constituent	CAS#	Units	Results	Ø	Results	Q	
Aluminum	7429-90-5	μg/L	. 31.9	U	29.0	Ū	
Antimony	7440-36-0	μg/L	58.0	U	58.0	U	
Arsenic	7440-38-2	μg/L	98.0	U	98.0	U	
Barium	7440-39-3	μg/L	27.0	В	25.8	В	
Beryllium	7440-41-7	μg/L	1.0	U	1.0	U	
Cadmium	7440-43-9	μg/L	5.0	U	5.0	U	
Calcium	7440-70-2	μg/L	42800		43400		
Chromium	7440-47-3	μg/L⊸	14.5	UJ	9.1	U.	
Cobalt	7440-48-4	μg/L	6.0	U	6.0	U	
Соррег	7440-50-8	μg/L	3.0	U	3.0	U	
Iron	7439-89-6	μg/L	144		13.7	В	
Lead	7439-92-1	μg/L	56.0	U	56.0	U	
Magnesium	7439-95-4	μg/L	10600		10300		
Manganese	7439-96-5	μg/L	5.3	U	2.0	U	
Nickel	7440-02-0	μg/L .	15.0	U	15.0	U	
Potassium	7440-09-7	μg/L	4980	В	4960	В	
Selenium	7782-49-2		87.0	U	108	U	
Silver	7440-22-4	μg/L	4.0	U	4.0	U	
Sodium	7440-23-5	μg/L	15300		14800		
Thallium	7440-28-0	μg/L	50.0	IJ	50.0	UJ	
Vanadium	7440-62-2	μg/L	10.5	В	10.0	В	
Zinc	7440-66-6	μg/L	7.6	В	4.0	U	

Sample Results (Form I's)

INORGANIC ANALYSES DATA SHEET

CLI	ENT	ID	NO.

Lab Name: L.A.	S		Contract: B	· ECHTEL_HA	BOG079
			-	,	SDG No.: LK4838
Matrix (soil/w	ater): WATE	R	•	Lab Samp	ole ID: L4838-2
evel (low/med	l): LOW_		`	Date Rec	ceived: 06/29/95
Solids:	0.	0 ,			
Co	ncentration	Units (ug	/L or mg/kg dr	y weight)	: UG/L_
	CAS No.	Analyte	Concentration	C Q	М
	7439-96-5 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0 7440-62-2 7440-66-6	Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	5.0 42800 14.5 6.0 3.0 144 56.0 10600 5.3 15.0 4980 87.0 4.0 15300 50.0 10.5 7.6	U B U B U B U B B B B B B B B B B B B B	
olor Before:	COLORLESS	Clari	ty Before: CLE	AR_	Texture:
olor After:	COLORLESS	Clarit	ty After: CLE	AR_	Artifacts:
omments:			· · · · · · · · · · · · · · · · · · ·		·
	······································				

BM 83195 166

		INORGANIC .	1 ANALYSES DATA :	SHEET	CLIENT ID NO.
Lab Name: L.A.	s	_ <u></u>	Contract: Bl	ECHTEL_HA	BOG080
Lab Code: LOCK	Ca	se No.: 62	9BHD SAS No.	:	SDG No.: LK4838
Matrix (soil/w					le ID: L4838-22
Level (low/med	·			•	· · · · · · · · · · · · · · · · · · ·
		- '		Date Rec	eived: 06/29/95
% Solids:	0.	0 .			
Co	ncentration	Units (ug	/L or mg/kg dry	y weight)	: UG/L_
	CAS No.	Analyte	Concentration	C Q	М
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-95-4 7439-96-5 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0 7440-66-6	Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium	29.0 58.0 98.0 25.8 1.0 5.0 43400 9.1 6.0 3.0 13.7 56.0 10300 2.0 15.0 4960 108 4.0 14800 50.0 10.0 4.0		
Color Before:		Clarit	y Before:	· ·	Texture:
Color After:		Clarit	y After:		Artifacts:
Comments:		· · · · ·			

FORM I - IN

BM B.31.95

Checklist

9613428 ATAINORGANIC (METALS) DATA VALIDATION CHECKLIST

VALIDATION LEVEL:	Α	В	С	D	Е						
VALIDATION PROCEDURE:		WHC-CM-5-3, Rev.	0	X WHC-SD-EN-S	PP-002, Rev. 2						
PROJECT:	100-HR-3 ROUND 9		SDG:	LK4838-LAS							
VALIDATOR:	B MORRIS 9-11,46	LATA NO:	VB403.86	DATE:	30-Aug-95						
REVIEWER:	B SEYMOUR 9-11-95	LAB:	LAS	CASE:	N/A						
SAF NO:	B95-067	QAPP NO:	DOE/RL-88-36, Rev. 0	SAP NO:	N/A						
ANALYSES REQUESTED											
ICP Metals (Unfiltered) 6010		X ICP Metals (Filtered) 6010									
SAMPLE NO. B0G079	MATRIX WATER	SAMPLE NO. B0G080	MATRIX WATER	·							
1. DATA PACKAGI	E COMPLETENESS AN	ND CASE NARRATIV	/E		YES NO N/A						
	on documentation pres		-		× ×						
2. HOLDING TIMES Are sample holding t					YES NO N/A						
		See HOLDING TIME	SUMMARY form	1							
	ERFORMANCE AND Cons performed on all insert acceptable?				YES NO N/A						
Are ICP interference	checks acceptable?										
Were ICV and CCV	checks performed on al	l instruments?									
Are ICV and CCV ch	ecks acceptable?										
Validation calculation	n checks were performe	d and are acceptable									
	If NO(s) are si	nacked see CALIBR	ATION DATA SI	IMMADV form							

9613428 LATAINORGANIC (METALS) DATA VALIDATION CHECKLIST

			YES NO N/A								
4. BLANKS		·									
Were ICB and CCB checks performed for all applicable analyses?	•	:	일 날 날								
Are ICB and CCB results acceptable?											
Were preparation blanks analyzed?	• • • •		<u> </u>								
Are preparation blank results acceptable?	. '										
If NO(s) are checked, see RI ANK AND SA	AMDI E DATA SUA	AMARY form									
If NO(s) are checked, see BLANK AND SAMPLE DATA SUMMARY form											
5. ACCURACY		•	YES NO N/A								
Were spike samples analyzed at the proper frequency?			× 🔲 🛄								
Are all spike sample recoveries acceptable?											
Are all elements spiked at an appropriate level?											
Was a post digestion spike analyzed?											
Are all post digestion spike recoveries acceptable?											
Were laboratory control samples (LCS) analyzed at the proper freque	ncy?										
Are all LCS recoveries acceptable?											
Validation calculation checks were performed and are acceptable.		·									
If NO(s) are checked, see ACCURAC	Y DATA SUMMAR	RY form									
6. PRECISION			YES NO N/A								
Were laboratory duplicates analyzed at the proper frequency?											
Are all duplicate RPD values acceptable?											
Were MS/MSDs analyzed?	. :										
Are all MS/MSD RPD values acceptable?	· ·										
Were ICP serial dilution samples analyzed at the proper frequency?											
Are all ICP serial dilution %D values acceptable?											
Validation calculation checks were performed and are acceptable.											
If NO(s) are checked, see PRECISIO	N DATA SUMMAR	Y form									

40386MTL.XLS, Checklist 8/31/95, 12:05 PM 000016

9613428. LATA INORGANIC (METALS) DATA VALIDATION CHECKLIST

7. FIELD QC SAMPLES	YES NO N/A
Were field QC samples (field/trip blanks, duplicates, splits, performance audit) identified?	× 📗 🗀
Are field/trip blank results acceptable? (see Blank Data Summary form)	X
Are field duplicate RPD values acceptable? (see Field QC evaluation)	
Are field split RPD values acceptable? (see Field QC evaluation)	
Are performance audit sample results acceptable?	
Comments: The following field splits were identified: B0G041/B0G079 and B0G042/B0G080.	
Split sample results are evaluated in SDG W0607-QES (VB403.91).	<u> </u>
8. FURNACE AA QUALITY CONTROL	YES NO N/A
Were duplicate injections required?	
Are all duplicate injection %RSD values acceptable?	
Were analytical spikes required?	
Are all analytical spike recoveries acceptable?	
Was MSA required?	
Are all MSA results acceptable?	
Validation calculation checks were performed and are acceptable.	
Comments:	
9. REPORTED RESULTS AND DETECTION LIMITS	YES NO N/A
Are results reported for all requested analyses?	벌닐닏
Are all results supported in the raw data?	
Are results calculated properly?	
Do results meet the CRDLs?	
Validation calculation checks were performed and are acceptable.	
Comments:	
	; .
VALIDATION SUMMARY	

For deficiencies (major and minor) and comments, please refer to the Qualification Summary Table.

96 3428. ISSA INORGANIC (METALS) DATA VALIDATION CHECKLIST

HOLDING TIME SUMMARY

							,	V .		
SDG:	LK4838-L/	AS	VALIDATOR:	B MORRIS		•		DATE:	30-Aug-95	· <u>:</u> · .
							···.		:	
PROJECT:	100-	HR-3 ROUND 9	REVIEWER:	B SEYMOUR			_:	LATA NO.:	VB403.86	··· . ··
						PREP	Required	ANALYSIS	Required	
	MATRIX		DATE	PREP	ANALYSIS	HT	HT	HT	HT	VAL
HEIS-SN	CODE	ANALYSIS	COLLECTED	DATE	DATE	(days)	(days)	(days)	(days)	Q
B0G079	WATER	ICP Metals	27-Jun-95	N/A	12-Jul-95	N/A	N/A	15	180	NONE
B0G080	WATER	ICP Metals	27-Jun-95	N/A	12-Jul-95	N/A	N/A	15	180	NONE

000018

96 13428 . 155% INORGANIC (METALS) DATA VALIDATION CHECKLIST

BLANK DATA SUMMARY

										. :	
SDG:	SDG: LK4838-LAS			TOR:	B MORRIS				DATE:	30-Aug-95	
PROJECT: 100-HR-3 ROUND 9			REVIEW	REVIEWER:		UR ·			LATA NO.:	VB403.86	
BLANK ID	ANALYTE	RESULT	LAB Q	RT	UNITS	2X RESULT	5X RESULT	10X RESULT	SAMPLES AFFECTED	VAL Q	
Cal Blank	Aluminum	35.3	В	,	µg/∟		176.5		B0G079	· U	
Cal Blank	Chromium	4.1	В		μg/L		20.5		B0G079 B0G080	U	
Cal Blank	Manganese	3.8	В		µg/L		19		B0G079	U	
Cal Blank	Selenium	.96.1	В٠		μg/L		480.5		B0G080	U	
Cal Blank	Thallium	-59.1	В		µg/L	118.2			B0G079 B0G080	UJ	
Prep Blank	Chromium	-4.09	В		μg/L			40.9	B0G079	J	

Comments:

The chromium prep blank was acceptable for BOGO80 (results not provided).

000019

Preparation Blank Concentration Units (ug/L or mg/kg): $UG/L_{\underline{\ }}$

CLP

3 BLANKS

Lab	Name:	L.A.S	·			Cc	ontract:	BECHTEL_	HA		
Lab	Code:	LOCK		Case No	.: 62	9BHT SA	S No.:		SDG	No.:	LK4838
Prep	paratio	on Blank	Matrix	(soil/	water): WATER		•			•

	<u> </u>	·				
Analyte	Initial Calib. Blank (ug/L)		nuing Calib Blank (ug/L) C 2		Prepa- ration Blank C	M
Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium_ Chromium_ Cobalt_ Copper_ Iron_ Lead_ Magnesium Manganese Nickel_ Potassium Selenium_ Silver_ Sodium_ Thallium_ Vanadium_ Zinc	29.0	58.0 98.0 1.0 1.0 5.0 32.0 3.2 6.0 3.2 6.0 12.0 56.0 50.0 3.0 15.0 4.0 70.0 4.0	B 29.0 U 58.0 U 98.0 U 21.0 U 1.0 U 5.0 U 32.0 B 3.0 U 6.0 U 12.0 U 12.0 U 56.0 U 50.0 B 2.9 U 15.0 U 600.0 U 70.0 U 70.0 U 4.0 U 4.0 U 4.0	U	29.000 U 58.000 U 98.000 U 21.000 U 1.000 U 5.000 U 32.000 U -4.090 B 6.000 U 12.000 U 56.000 U 50.000 U 2.000 U 15.000 U 4.000 U 4.000 U 4.000 U 4.000 U	P

FORM III. - IN

ILMO3.0

BM 8-31-95 171 000020 CT.P

3 BLANKS

Lab	Name:	L.A.S	·	Contract:	BECHTEL_HA		
Lab	Code:	LOCK	Case No.: 629BHT	SAS No.:	SDC	G No.:	LK4838
Prep	paratio	on Blank	Matrix (soil/water):				•
Prep	aratio	n Blank	Concentration Units (ug/	L or mg/kg)) :		

		•	· ·	<u> </u>		 				•
Analyte	Initial Calib. Blank (ug/L)	С	Cont	inuing Blank C		1 3	С	Prepa- ration Blank	С	М
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc			29.0 58.0 98.0 21.0 1.0 5.0 32.0 3.0 6.0 3.0 6.0 3.0 6.0 70.0 70.0 70.0 70.0 4.0 4.0 4.0	ָ	29.0 -58.0 -98.0 -21.0 -1.0 -5.0 -3.0 -3.0 -12.0 -56.0 -50.0 -50.0 -87.0 -87.0 -87.0 -70.0 -59.1 -4.0 -4.0					

FORM III - IN

ILMO3.0

8^M 931.95 172 000021

9613420 (METALS) DATA VALIDATION CHECKLIST

	P	ERCENT RECOVERY (ICV/CC	V)	
SDG:	LK4838-LAS		Date	e: 30-Aug-95
LATA No.:	VB403.86		Validato	r: B MORRIS
Analyte	ICA/CCA ID	Observed Value	True Value	%R
		. 0	Α	
Aluminum	ICV	101267	100000	101.3%
Barium	CCV	1022	1000	102.2%
			:	

96 3428 LATE MORGANIC (METALS) DATA VALIDATION CHECKLIST

	MATRIX SPIKE	RECOVERY (MS)		
LK4838-LAS		_ Date:	30-Aug-95	· · · · · ·
VB403.86	-	_ Validator:	B MORRIS	· · · · · · · · · · · · · · · · · · ·
Sample ID	Spike Sample Result	Sample Result	Spike Added	%R
	SSR	SR	SA	
B0G079	51.14	0.00	50.00	102.3%
B0G079	550.21	0.00	500.00	110.0%
B0G080	1901.88	0.00	2000.00	95.1%
B0G080	487.88	0.00	500.00	97.6%
			•	
	VB403.86 Sample ID B0G079 B0G079 B0G080	LK4838-LAS VB403.86 Spike Sample Result Sample ID Result SSR 51.14 B0G079 550.21 B0G080 1901.88	VB403.86 Validator: Sample ID Spike Sample Result Sample Result SSR SR B0G079 51.14 0.00 B0G079 550.21 0.00 B0G080 1901.88 0.00	LK4838-LAS Date: 30-Aug-95 VB403.86 Validator: B MORRIS Sample ID Spike Sample Result Sample Result Added SSR SR SA B0G079 51.14 0.00 50.00 B0G079 550.21 0.00 500.00 B0G080 1901.88 0.00 2000.00

9613428 LATATHORGANIC (METALS) DATA VALIDATION CHECKLIST

PERCENT RECOVERY (LCS)

SDG: LK4838-LAS

LATA No.: VB403.86

Date: 30-Aug-95

Validator: B MORRIS

Analyte	Observed value	True value
	OLCS	ALCS
Aluminum	2085.1	2000
Calcium	105465.2	100000

%R 104.3% 105.5%

9613428 LATA NORGANIC (METALS) DATA VALIDATION CHECKLIST

(4838-LAS 3403.86	-	Date: Validator:	30-Aug-95
3403.86	<u>-</u> .	Validator:	
			B MORRIS
	•	· .	
•		Duplicate concentration	RPD
٠.	os	D	·
G079	31.86	33.08	3.8%
G079	27.00	26.46	2.0%
G080	13.74	12.64	8.3%
G080	108.10	95.99	11.9%
		<u> </u>	
)	G079 G080	OS G079 31.86 G079 27.00 G080 13.74	Imple ID concentration concentration OS D G079 31.86 33.08 G079 27.00 26.46 G080 13.74 12.64

9613428 LATA MORGANIC (METALS) DATA VALIDATION CHECKLIST

SDG:_	LK4838-LAS	Date: 30-Aug-95			
LATA No.:_	VB403.86	Validator: B MORRIS			
Analyte	Analyte Concentration before Dilution	Analyte Concentration after Serial Dilution S	%D		
Calcium BOG079	42844	42793	0.1%		
ron B0G079	143.8	147.1	2.3%		
Calcium Bogo80	43405	43194	0.5%		
Magnesium Bogoso	10349	10479	1.3%		

000026

9613428 LATA MORGANIC (METALS) DATA VALIDATION CHECKLIST

	INORGANICS	RESULTS CA	ALCULATION, WA	TER
SDG:_	LK4838-LAS		·	Date: 30-Aug-95
LATA No.:_	V B403.86	-	Valid	ator: B MORRIS
Analyte	Concentration from curve	. ·	Dilution Factor	Concentration (µg/L)
	CONCW	units	DFW]
Aluminum B0G079	0.0319	mg/L	1	31.9
Calcium BOGO80	43.4	mg/L	<u> </u>	43400

Laboratory Case Narrative

Lockheed Analytical Services

Log-in No.: L4838

Quotation No.: Q400000-B

SAF: B95-067

Document File No.: 0520596/0525596

BHC Document File No.:242

SDG No.: LK4838

CASE NARRATIVE INORGANIC METALS ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument tune (ICP/MS only), initial and continuing calibration verification, initial and continuing calibration blanks, method blank(s), laboratory control sample(s), ICP interference check samples (ICP only), serial dilutions, analytical (post-digestion) spike samples, matrix spike (predigestion) sample(s), duplicate sample(s).

Preparation and Analysis Requirements

- One water sample was received in good condition on June 29, 1995 and logged in as L4838.
- The samples were prepared as LAS Batch 629BHT and analyzed for selected analytes as requested on the chain of custody. Sample BOG079 (L4838-2) was used for matrix spike and duplicate and serial dilution. All data flags due to the performance of the above-mentioned QC are associated with every sample digested with this batch.

Holding Time Requirements

All samples were analyzed within the method-specific holding times.

Internal Quality Control

All internal quality control were within acceptance limits.

Hongsheng LI		7/31/95
Prepared By	 	Date

BM 8:31.95

Lockheed Analytical Services

Log-in No.: L4838

Quotation No.: Q400000-B

SAF: B95-067

Document File No.: 0520596/0525596

BHC Document File No.:242

SDG No.: LK4838

CASE NARRATIVE INORGANIC METALS ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument tune (ICP/MS only), initial and continuing calibration verification, initial and continuing calibration blanks, method blank(s), laboratory control sample(s), ICP interference check samples (ICP only), serial dilutions, analytical (post-digestion) spike samples, matrix spike (predigestion) sample(s), duplicate sample(s).

Preparation and Analysis Requirements

- One water sample was received in good condition on June 29, 1995 and logged in as L4838.
- The samples were prepared as LAS Batch 629BHD and analyzed for selected analytes as requested on the chain of custody. Sample BOG080 (L4838-22) was used for matrix spike and duplicate and serial dilution. All data flags due to the performance of the above-mentioned QC are associated with every sample digested with this batch.

Holding Time Requirements

All samples were analyzed within the method-specific holding times.

Internal Quality Control

All internal quality control were within acceptance limits.

Hongsheng LI	· · · · · · · · · · · · · · · · · · ·	•	7/31/95	
Prepared By			Date	

BB.31-95

Chain-of-Custody Information

Bechtel	Hanford,	Inc.

CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST

		·
10	83	Page1 of
		ata Turnaround
		☐ Priority

ge 1 of 7 k7 t 20195

Collector KCCC	1 A. K	7,1220	R. E. Peterson					(509) 372-9	9638	•	ľ	Normal	
roject Designation Sampling Location 00-HR-3 Groundwater Sampling, Round 9, Phase 1 100 H								SAF No. B95-067					
e Chest No. Field Logbook No.				ield Logbook No.				Method of Shipment Federal Express					
hipped To ockheed			Offsite Property No. W95-0-		3 B			Bill of Lad	ing/Air Bill N ク 462	3.29	$\widehat{\mathfrak{I}}$		
ossible Sample Hazards/Rer	narks		Preservation	HNO,	Cool 4°C	H ₂ SO ₄	Cool 4°C	+1	H ₂ SO ₄	HNO,	Cool 4°C	HCI	Cool 4°C
		· .	Type of Container	G	G	P/G	P/G	P	P/G	P/G	G	P/G	P
· · · · · · · · · · · · · · · · · · ·			No. of Container(s)	1	1	11	1.	1	1	. 9	1	4	1
pecial Handling and/or Stor Aaintain samplings between		·	Volume	500mL	500mL	500mL	250mL	1L	1L	ıL	500mL	1L	20mL
SA	AMPLE ANALYSI	s		ICP Metals (Unfilter- ed)	Anions (IC) - F, Cl, SO ₄ , NO ₂ , NO ₃ , PO ₄	NO₂ - NO₃	Turbidity	Sulfide	Ammonia	Gross Alpha, Gross Beta, Sr-90, U-235/238	Tritium	Tc-99	Activity Scan
Sample No.	Matrix*	Date Sampled	Time Sampled		N. C. 44.			1,5.0%			T		
B0G079 .	L.	6.37.55	0.937	Å	,	4	1/8	4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \x	K	6	X
· · · · · · · · · · · · · · · · · · ·	 			1									1.
													<u> </u>
· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·		 	· ·	<u> </u> 		 -	ļ —	 	 		
CHAIN OF POSSESSION	8	Sign/Print I		13::5	*1 ZnAc+		ONS			<u> </u>		Matrix* S = Soil SE = Sed	
Relinquished By AC (272 AC (AC) (ERC) Relinquished By Relinquished By	6-27-75 Date/Time	Received By Received By Received By	A/K Traps C/24 Date/Tin Date/Tin		Sample and 180.1 is be the 48-hour	llysis for pho ing requested r holding tim	l for informa e will not be	tion only. T met.	The ERC Con	0.0; and turbi	wledges that	SO = Soli SL = Shu W = Wa O = Oil A = Air DS = Dru	lid dge ster
Relinquished By	Date/Time	Recei By	Date/Ti		- 12 ha	piez.	betwee	n 7°C		fauge , for T	40 SE.	T = Tist WI = Win L = Liq V = Ven X = Oth	sue pe juid getation
SECTION	ived By AW1	ubb 3	Title	-shod.					4.2		10900		
DISPOSITION	osal Method	(9		Di	sposed By				Ī	Date/Time			

Bechtel Hanford, Inc.		CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST									Pag Data Turna		2
Collector L	1 1	0	Company Contact					Telephone			1	☐ Priority ■ Normal	İ
K-666	· / A ·	K1220	R. E. Peterson					(509) 372-	9638		<u> </u>	Nominar	
Project Designation 100-HR-3 Groundwater Samplin	ng. Round 9. Pha	se 1	Sampling Location 100 H					SAF No. B95-067	:				
Ice Chest No.			Field Logbook No.	C.101	<i>X</i>			Method of Federal Ex					
Shipped To Lockheed			Offsite Property No. W95-0-(Bill of Lad	ing/Air Bill	No. 13-29	5		
Possible Sample Hazards/Rema	rks		Preservation	HNO ₃									
			Type of Container	G									
·	• •		No. of Container(s)	1						,			
Special Handling and/or Storag Maintain samplings between 2°		*.	Volume	500mL								,	療
SAM	PLE ANALYSIS			ICP Metals (Filtered)									
Sample No.	Matrix*	Date Sampled	Time Sampled	100	29 Kg - 3 Kg s 1	4 .JU:			\$ 2023				
B0G080	w	6.27.85	0 93)	٦						<u>.</u>		į	
					·					· .		Ç	
												Since William	
					·		<u>.</u>	` .		ļ			
				ļ <u>.</u>			· ·		<u> </u>	ļ			
					SPECIAL V	Norm Horn	IONIO.		<u> </u>	<u> </u>	<u>.</u> .	Denis	
Relinquished By Relinquished By Relinquished By Relinquished By Relinquished By	Date/Time 6-3-7-7 Date/Time 6/24/95 Date/Time	Received By Received By Received By Received By	Names Date/Tip Date/Tip Date/Tip		Refer to Acceptate The standard	tivity Scan	listed on page		rsed to	o an	of rai	Matrix* S = Soil SE = Sedin SO = Solid SL = Sludg W = Wate O = Oil A = Air DS = Drun DL = Drun T = Tissu	r 1 Solids 1 Liquids
Relinquished By	Date/Time	Reserved By	Date/Tir	ne	12 hou				. '			WI = Wipe L = Liqui V = Veget X = Other	d ation
LABORATORY Received	Au		Sample Chal	odin	sposed By				<u>ر</u> - ب	Pate/Time	1090)	
DISPOSITION (C)	Method	ယ			posed By				. L	Pate/Time			

Supplemental Information

Control #: 95-0040 Sample Disposition Record Revision #: Date Initiated: 07/05/95 Section 1 - BACKGROUND SAF #: B95-067 OU: 100-HR-3 Project ID: 100-HR-3 LFI Task ID: 6 Sampling Event: 100-HR-3 Groundwater Sampling-Phase 1 Laboratory: Quanterra/Lockheed Project Coordinator: R. C. SMith Task Manager: R. E. Peterson Section 2 - SAMPLE INFORMATION Number of Samples: 4 - Ounaterra: 2 - Lockheed ID Numbers: Q - B0G041, B0G042, B0G077, B0G078; L - B0G079, B0G080 Matrix: Water Collection Date: 06/27/95 Section 3 - ISSUE **Class: Validation Direction** NCR Number: N/A Type: Temperature Excursion Description: Samples were stored for twelve hours in a refrigerator with temperatures of 7-8 degrees Celcius. N/A NCR Validation (Print/Sign) Date Type: Use As Is Description: With concurrence from R. E. Peterson, task lead, proceed with analyses and document

Section 4 - DISPOSITION

N/A

excursion with this SDR.

R. C. Smith/ Project Coordinator (Print/Sign)

R. E. Peterson Task Manager (Print/Sign)

Date QA (Print/Sign)

Section 5 - INSPECTION (Issue Class: Nonconformance Only)

Inspection Number: Inspection Results:

N/A **Date** Inspector (Print/Sign)

000035

END OF PACKAGE

DATA VALIDATION REPORT for 100-HR-3 GROUNDWATER ROUND 9 PHASE 1 General Chemistry Analysis SDG LK4838-LAS LATA VB403.86

Bechtel Hanford Inc. P.O. Box 969 Richland, Washington

September 13, 1995

Table of Contents

Data Validation Narrative	2
ANALYSES REQUESTED00000	2
DATA QUALITY OBJECTIVES	2
GLOSSARY OF VALIDATION APPLIED QUALIFIERS (CHEMISTRY) 00000	
GLOSSARY OF LABORATORY APPLIED QUALIFIERS	6
Qualification Summary Table	7
Data Summary Table	9
Sample Results	1
Checklist	3
Laboratory Case Narrative	4
Chain-of-Custody Information	6
Supplemental Information	8
END OF PACKAGE	0

100-HR-3 GROUNDWATER ROUND 9 PHASE 1 Data Validation Narrative

INTRODUCTION

All samples in Sample Delivery Group (SDG) LK4838-LAS (VB403.86) were validated at level D as defined in the Data Validation Procedures for Chemical Analysis (WHC-SD-EN-SPP-002, Rev. 2).

The analyses were performed by Lockheed Analytical Services.

ANALYSES REQUESTED

See Table 1.

DATA QUALITY OBJECTIVES

Precision: Goals for precision were met.

Accuracy: Goals for accuracy were met.

Sample Result Verification: All sample results were supported in the raw data.

Detection Limits: Detection limit goals were met for all sample results as specified

in the RCRA Facility Investigation/Corrective Measures Study Work Plan for the 100-HR-3 Operable Unit, DOE/RL 88-36, Rev.

0.

Completeness: The data package was 100% complete for all requested analyses.

MAJOR DEFICIENCIES

No major deficiencies were identified during data validation which required qualification of data as unusable.

MINOR DEFICIENCIES

No minor deficiencies were identified during data validation which required qualification of data as estimated.

Table 1 Chain-of-Custody Analysis Request

LATA ID #: VB403.86

SDG: LK4838-LAS

Sample Information							s Re	ques	sted
									:
SAMPLE	DATE			FIELD QC					
NO.	COLLECTED	MATRIX	SAF	INFO	1	. 2	3	4	5
B0G079	27-Jun-95	WATER	B95-067	Split of B0G041	Х	Х	X.	Х	Х

Method References:

	Analysis	Method
1.	Anions (F, CI, SO ₄ , NO ₂ , NO ₃ , PO ₄)	300.0
2.	$NO_2 + NO_3 - N$	353.2
3.	Turbidity	180.1
4.	Sulfide	9030
5.	Ammonia	350.1

NOTES: (complete documentation of these notes can be found in the Supplemental Information Section of this report)

NOTE 1: Sample was stored for 12 hours in a refrigerator with temperatures of 7-8 degrees Celsius. The sample data is unaffected. See ROD 95-0040.

REFERENCES

WHC 1993, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 2, Westinghouse Hanford Company, Richland, Washington.

DOE 1992, RCRA Facility Investigation/Corrective Measures Study Work Plan for the 100-HR-3 Operable Unit, DOE/RL 88-36, Rev. 0, Department of Energy-Hanford, Richland, Washington.

GLOSSARY OF VALIDATION APPLIED QUALIFIERS (CHEMISTRY)

Qualifiers which may be applied by data validators in compliance with the procedures herein are as follows.

- U- Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.
- UJ- Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a QC deficiency identified during data validation, the associated quantitation limit is an estimate.
- J- Indicates the compound or analyte was analyzed for and detected. The associated concentration is an estimate, but the data are usable for decision making purposes.
- BJ- Applied to inorganic analyses only. Indicates the analyte concentration was greater than the IDL but less than the CRDL and is considered an estimated value.
- R- Indicates the compound or analyte was analyzed for, detected, and due to an identified QC deficiency the data are unusable.
- UR- Indicates the compound or analyte was analyzed for and not detected in the sample.

 Additionally, the data are unusable due to an identified QC deficiency.

GLOSSARY OF LABORATORY APPLIED QUALIFIERS

Qualifiers which may be applied by the laboratory in compliance with applicable requirements are as follows.

Commonly used laboratory general chemistry qualifiers:

- U- Indicates the analyte was analyzed for but not detected in the sample.
- B- Reported value is less than the contract required detection limit (CRDL) but greater than or equal to the instrument limit (IDL).

Qualification Summary Table

Qualification Summary Table

General Chemistry

ANALYTE	TYPE	QUALIFIER	SAMPLES	DQO	٠.	REASON
			AFFECTED		<u> </u>	
		No q	ualifiers were added	d by validator.		

Comments:

- 1. Sample was stored for 12 hours in a refrigerator with temperatures of 7-8 degrees Celsius. Sample data is unaffected.
- 2. Sample B0G079 is a split of B0G041. The field split will be evaluated in SDG# W0607-QES, (LATA ID # VB403.91).

Data Summary Table

9613428 GENERAL CHEMISTRY DATA SUMMARY TABLE

LATA ID#:	VB403.86	HEIS#.	B0G07	9
		Date:	27-Jun-	95
		Matrix:	WATE	R ·
Constituent	CAS#	Units	Results	Q
Turbidity	TURBIDITY	NTU	0.61	
Chloride by IC	16887-00-6	mg/L	5.6	
Fluoride by IC	16984-48-8	mg/L	0.27	
Nitrate by IC	14797-55-8	mg/L	3.0	
Nitrite by IC	14797-65-0	mg/L	0.002	U
Ortho Phosphate by IC	14265-44-2	mg/L	0.034	В
Sulfate by IC	14808-79-8	mg/L	32	
Ammonia Nitrogen	7664-41-7	mg/L	. 0.020	U
Nitrate-Nitrite-Nitrogen	NO2+NO3-N	mg/L	3.3	
Sulfide	18496-25-8	mg/L	1.0	U

000010

Sample Results (Form I's)

LOCKHEED ANALYTICAL SERVICES

Sample Results

Client Sample ID: B0G079	Date Collected:	27-JUN-95	· · :	
Matrix: Water	 Date Received:	29-JUN-95		
Percent Solids: N/A			•	

Constituent	Units	Method	Result	Project Reporting Limit	Data Qualifier(s)	Date Analyzed	LAS Batch ID	LAS Sample ID
Turbidity	NTU	180.1	0.61	N/A		29-JUN-95	24771	L4838-5
Chloride	mg/L	300.0	5.6	0.020		29-JUN-95	24769	L4838-3
Fluoride	mg/L	300.0	0.27	0.10		29-JUN - 95	24772	L4838-3
Nitrate-N	mg/L	300.0	3.0	0.020		29-JUN-95	24766	L4838-3
Nitrite-N	mg/L	300.0	< 0.002	0.010	U	29-JUN-95	24767	L4838-3
Ortho Phosphate	mg/L	300.0	0.034	0.10	В	29-JUN-95	24768	L4838-3
Sulfate	mg/L	300.0	32.	0.10		29-JUN-95	24770	L4838-3
Ammonia Nitrogen	mg/L	350.1	< 0.020	0.050	n'.	06-JUL-95	24789	L4838-7
Nitrate-Nitrite-Nitrogen	mg/L	353.2	3.3	0.050		05-JUL-95	24790	L4838-4
Sulfide	mg/L	9030	< 1.0	3.0	U	01-JUL-95	24793	L4838-6

03e

000012

Checklist

9613426 LATA GENERAL CHEMISTRY DATA VALIDATION CHECKLIST

VALIDATION LEVEL:	Α	В	С	D	E			
VALIDATION PROCEDURE:		WHC-CM-5-3, R	ev. 0 <u>X</u>	WHC-SD-EN-SPP-0	002, Rev. 2			
PROJECT:	100-HR-3 ROUND 9)	SDG:	LK4838-LAS				
VALIDATOR: りつ	મુંગ્રાહેર BJ SEYMOUR	LATA NO:	VB403.86	DATE:	30-Aug-95			
REVIEWER:	BJ MORRIS	LAB:	LAS	CASE:	N/A			
SAF NO:	B95-067	QAPP NO:	DOE/RL-88-36, Rev. 0	SAP NO:	N/A			
		ANALYS	SES REQUESTED					
X Anions 300.0	X Turbidity 180.1	X Ammonia 350.1	X Sulfide 9030	1 1				
SAMPLE NO. B0G079	MATRIX WATER	COMMENTS: 1. Sample was si degrees Celciu	tored for 12 hours in a refr	igerator with tempera	tures of 7-8			
1. DATA PACKAGE	E COMPLETENESS	AND CASE NAR	RATIVE		YES NO N/A			
ls technical verificati	ion documentation pr	esent?			lee			
Is a case narrative p	resent?							
2. HOLDING TIMES Are sample holding to				. *	YES NO N/A			
· · · · · · · · · · · · · · · · · · ·		See HOLDING	TIME SUMMARY form					
3. INSTRUMENT P	ERFORMANCE AND				YES NO N/A			
Were initial calibration		ı	-		X			
Are initial calibration	·		. :					
	Were calibration checks performed on all instruments?							
Are calibration check	•				X 🔲 🗋			
Validation calculation	-	med and are acce	eptable.		X 🗍			
	If NO(s) are	checked, see C	ALIBRATION DATA SUM	IMARY form				

9613428 EATA GENERAL CHEMISTRY DATA VALIDATION CHECKLIST

4. BLANKS	YES NO N/A
Were laboratory blanks performed for all applicable analyses?	
Are laboratory blank results acceptable?	×
Were preparation blanks analyzed?	
Are preparation blank results acceptable?	\boxtimes \square
If NO(s) are checked, see BLANK AND SAMPLE DATA SUMMARY form	
5. ACCURACY	YES NO N/A
Were spike samples analyzed at the proper frequency?	× 📗 🗌
Are all spike sample recoveries acceptable?	X
Were laboratory control samples (LCS) analyzed at the proper frequency?	X
Are all LCS recoveries acceptable?	X 🔲 🗀
Validation calculation checks were performed and are acceptable.	X]
If NO(s) are checked, see ACCURACY DATA SUMMARY form	
6. PRECISION	YES NO N/A
Were laboratory duplicates analyzed at the proper frequency?	
Are all duplicate RPD values acceptable?	
Were MS/MSDs analyzed?	
Are all MS/MSD RPD values acceptable?	
Validation calculation checks were performed and are acceptable.	
If NO(s) are checked, see PRECISION DATA SUMMARY form	
7. FIELD QC SAMPLES Were field QC samples (field/trip blanks, duplicates, splits, performance audit) identified? Are field/trip blank results acceptable? (see Blank Data Summary form) Are field duplicate RPD values acceptable? (see Field QC calculations) Are field split RPD values acceptable? (see Field QC calculations) Are performance audit sample results acceptable? Comments: Sample B0G079 is a split of B0G041. The split evaluation will be done in SDG# W06 (LATA ID # VB403.91).	YES NO N/A X
(LATA ID # VDT00.81).	
	

40386GNC.XLS, Checklist 9/7/95, 3:07 PM

9613428 LATA GENERAL CHEMISTRY DATA VALIDATION CHECKLIST

8. ANALYTE QUANTITATION		YES NO N/A
Was analyte quantitation performed properly?		
Are results calculated properly?		
Validation calculation checks were performed and are acceptable.		
Comments:	<u> </u>	
9. REPORTED RESULTS AND DETECTION LIMITS		YES NO N/A
Are results reported for all requested analyses?		× 🔲
Are all results supported in the raw data?		×
Do results meet the CRDLs?		×
Validation calculation checks were performed and are acceptable.		×
Comments:		
		i.
		
VALIDATION SUMMARY		

For deficiencies (major and minor) and comments, please refer to the Qualification Summary Table.

9613428 LATAGENERAL CHEMISTRY DATA VALIDATION CHECKLIST

HOLDING TIME SUMMARY

						. *				
SDG:	LK4838-L	AS	VALIDATOR:	BJ SEYMOUR	8	N. 48"		DATE:	8/30/95	7 · ·
				· -						
PROJECT:	100	-HR-3 ROUND 9	REVIEWER:	BJ MORRIS	•			LATA NO.:	VB403.86	
						PREP	Required	ANALYSIS	Required	
	MATRIX		DATE	PREP	ANALYSIS	HT	HT .	HT.	HT	. VAL
HEIS-SN	CODE	ANALYSIS	COLLECTED	DATE	DATE	(days)	(days)	(days)	(days)	Q
B0G079	WATER	Anions(CI,F,SO ₄)	27-Jun-95	N/A	29-Jun-95	N/A	N/A	2	28	NONE
B0G079	WATER	Anions(NO ₂ ,NO ₃ ,PO ₄)	27-Jun-95	N/A	29-Jun-95	N/A	N/A	2	2	NONE
B0G079	WATER	Ammonia	27-Jun-95	N/A	06-Jul-95	N/A	N/A	9	28	NONE
B0G079	WATER	Sulfide	27-Jun-95	N/A	01-Jul-95	N/A	N/A	4	7	NONE
B0G079	WATER	NO ₂ +NO ₃	27-Jun-95	Ņ/A	05-Jul-95	N/A .	N/A	8	28	NONE
B0G079	WATER	Turbidity	27-Jun-95	N/A	29-Jun-95	N/A	N/A	2	2	NONE

000017

9613429 LATA GENERAL CHEMISTRY CALCULATION SPREADSHEET

	INEAR REGRESS	SION ANALYSIS
SDG: <u>LK4838-LAS</u>	· -	Date: 30-Aug-95
LATA No.: <u>VB403.86</u>		Validator: BJ SEYMOUR
Analyte/Calibration Date: C	hloride/6-26-95	
Concentration	Absorbance	
<u> </u>	у	r l²
0.000	0	0.9999 0.9998
20.000	24556	
50.000	65035	slope x intercept
100.000	173890	1553.2508 11.3170
1000.000	1451331	
5000.000	7765103	1/slope y intercept
		0.0006 -17273.693

L	LINEAR REGRES	SSION ANALYSIS	
SDG: <u>LK4838-LAS</u>	·	Date: 30-Aug-95	
LATA No.: <u>VB403.86</u>		Validator: BJ SEYMOUR	
Analyte/Calibration Date: F	luoride/6-23-95		
Concentration	Absorbance		
x	у	L L ₅	
0.000	0	0.9999 0.99	97
20.000	57594	<u> </u>	
50.000	138167	slope x inter	cept
100.000	251671	2998.0814 18.87	706
1000.000	2742512		
5000.000	14973840	1/slope y inter	cept
		0.0003 -55729	.705

9613428 LATA GENERAL CHEMISTRY CALCULATION SPREADSHEET

	,	PERCENT RECOVER	Y (ICV/CCV)	
SDG:	LK4838-LAS	Date:	30-Aug-95	
LATA No.:	VB403.86		Validator:	BJ SEYMOUR
Analyte	Sample ID	Observed Value	True Value	%R
		0	Α .	
Chloride	ICV	937.245	1000	94%
Chloride	CCV	924.269	1000	92%
Fluoride	ICV-	991.347	1000	99%
Fluoride	CCV	982.742	1000	98%

9613428 1593 CATA GENERAL CHEMISTRY CALCULATION SPREADSHEET

		MATRIX SPIKE	RECOVERY (MS)		
SDG:	LK4838-LAS		Date	: 30-Aug-95	
LATA No.:	VB403.86		Validator	: BJ SEYMOUR	
_			• • •		
Analyte	Sample ID	Spike Sample Result	Sample Result	Spike Added	%R
		SSR	SR	SA	
Chloride	B0G079	47.765	5.644	40	105%
Turbidity	B0G079	5.890	0.610	5.04	104.8%
Ammonia	B0G079	4.268	0.014	4	106.4%
N0 ₂ +N0 ₃	B0G079	7.288	3.284	4	100.1%
Sulfide	B0G079	4.083	0.000	3.98	102.6%

9613428 LEATA GENERAL CHEMISTRY CALCULATION SPREADSHEET

PERCENT RECOVERY (LCS)

SDG: LK4838-LAS

LATA No.: ___ VB403.86

Date: 30-Aug-95

Validator: BJ SEYMOUR

Analyte	Observed value	True value
	OLCS	ALCS
Chloride	51.645	50
Fluoride	976.813	1000

%R 103% 98%

9613428 LEGGENERAL CHEMISTRY CALCULATION SPREADSHEET

		RELATIVE PERCENT	DIFFERENCE	
SDG:	LK4838-LAS	· .	Date	30-Aug-95
LATA No.:	VB403.86		Validator	BJ SEYMOUR
Analyte	Sample ID	Original (Sample) concentration	Duplicate concentration	RPD
		· os	D	1
Chloride	B0G079	5.644	5.535	2.0%
Turbidity	B0G079	0.610	0.571	6.6%
Ammonia	B0G079	0.014	0.014	. 0.0%
NO ₂ +NO ₃	B0G079	3.284	3.200	2.6%
Sulfide	B0G079	0.100	0.100	0.0%

9613428 1596 GENERAL CHEMISTRY CALCULATION SPREADSHEET

	RESUL	LTS CALCULA	TION, WATER	
SDG:_	LK4838-LAS		Date: <u>30-Aug-95</u>	
LATA No.:_	LATA No.: VB403.86		Validator: BJ SEYMOUR	
Analyte	Concentration from curve	· ·	Dilution Factor	Concentration
	CONCW	units	DFW	· · · · ·
Chloride	5.644	mg/L	11	5.6
Fluoride	274.203	μg/L	1 :	274.2

Laboratory Case Narrative

Lockheed Analytical Services

Log-in No.: L4838

Quotation No.: Q400000-B

SAF: B95-067

Document File No.: 0520596/0525596

BHC Document File No.:242

SDG No.: LK4838

CASE NARRATIVE INORGANIC NON METALS ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument tune (ICP/MS only), initial and continuing calibration verification, initial and continuing calibration blanks, method blank(s), laboratory control sample(s), ICP interference check samples (ICP only), serial dilutions, analytical (post-digestion) spike samples, matrix spike (predigestion) sample(s), duplicate sample(s).

Preparation and Analysis Requirements

 One water sample was received for LK4838 and analyzed in batch 629 bh for selected analytes as requested on the chain of custody. Quality control analysis was performed on the following sample:

Client ID	LAL#		Method	
BOG079	L4838-5	DUP, MS	180.1 Turbidity	
BOG079	L4838-3	DUP, MS	300.0 Chloride, Fluoride, Nitrate-Nitrogen, Nitrite-Nitrogen, Orthophosphate and Sulfate	
BOG079	L4838-7	DUP, MS 350.1 Ammonia		
BOG079	L4838-4	DUP, MS	353.2 Nitrate-Nitrite-Nitrogen	
BOG079	L4838-6	DUP, MS	9030 Sulfide	

Holding Time Requirements

All samples were analyzed within the method-specific holding times.

Method Blanks

 The concentration levels of all the requested analytes in the method blank were below the reporting detection limits.

Internal Quality Control

All Internal Quality Control were within acceptance limits.

Kay McCann Prepared By July 10, 1995 Date

bjs 8-3095

000025

Chain-of-Custody Information

Bechtel Hanford, Inc	.]			DY/SAM	IPLE A	NALYSI	S REQU	JEST	7	83	ata Turna		76 20195	-
Collector	1 0 6	?	Company Contact					Telephone				Normal		
Kice)	HIK	12.20	R. E. Peterson	E. Peterson mpling Location				(309) 372-9038					4	
Project Designation / 100-HR-3 Groundwater Sampli	ng, Round 9, Pha	se 1	100 H					SAF No. B95-067						
Ice Chest No.	<u>, , , , , , , , , , , , , , , , , , , </u>		Field Logbook No.				Method of Shipment Federal Express					1		
Shipped To Lockheed			Offsite Property No.	ffsite Property No. W95-0-0204-38 Bill of Lading/Air Bill No. 290 4633 299					<u> </u>					
Possible Sample Hazards/Rema	irks		Preservation	HNO,	Cool 4°C	H ₂ SO ₄	Cool 4°C	*1	H ₂ SO ₄	HNO,	Cool 4°C	HCl	Cool 4°C	
		·. ·	. Type of Container	G	G	P/G	P/G	P	P/G	P/G	G	P/G	P	S
			No. of Container(s)	. 1	1	1	1.	1	1	. 9	1	4	1	
Special Handling and/or Storag Maintain samplings between 2°			Volume	500mL	500mL	500mL	250mL	1L	1L	ΙL	500mL	1L	20mL	
SAM	IPLE ANALYSIS			ICP Metals (Unfilter- ed)	Anions (IC) - F, Cl, SO ₄ , NO ₂ , NO ₃ , PO ₄	NO ₂ - NO ₃	Turbidity	Sulfide	Ammonia	Gross Alpha, Gross Beta, Sr-90, U-235/238	Tritium	Tc-99	Activity Scan	
Sample No.	Matrix*	Date Sampled	Time Sampled		2.200	200125	3 3 3 3 3	Story 200	2/2/2011			X 2 .	!	_
B0G079	Ce.	6.27.55	0.937	X	X	۴.	F	k	4	1. K	K	6	∞	
							·							
	·	· .				<u> </u>								
	<u>.</u>	· · · · · · · · · · · · · · · · · · ·		<u> </u>	ļ				<u> </u>					
<u> </u>		·		<u> </u>	. :		<u>.</u>	·	<u></u>			·	·	
			<u> </u>		apparet.	NSTRUCTIO	ONG	<u> </u>		<u></u>	. · ·	Matrix*		
Relinquished By AG. (220) Relinquished By Relinquished By Relinquished By LABORATORY SECTION Receive	Date/Time Date/Time Date/Time	Received By	Date/Tir	ne ne	*1 ZnAc+ in; 6/27/4 Sample and 180.1 is be the 48-hour The	NaOH Ilysis for phosing requested the holding time Tempe / a	sphate, nitrat for informate will not be	ion only. Ti met.	out of and gre,		wledges that	S = Soi SE = Sed SO = Soi SL = Sid W = Wa O = Oil A = Air DS = Dru	iment id dge ter m Solids m Liquids sue pe uid getation	
DISPOSITION DISPOSA	l Method	3		Dis	sposed By				Ď	ate/Time				

Supplemental Information

Control #: 95-0040 Sample Disposition Record Revision #: Date Initiated: 07/05/95 Section 1 - BACKGROUND SAF #: B95-067 OU: 100-HR-3 Project ID: 100-HR-3 LFI Task ID: 6 Sampling Event: 100-HR-3 Groundwater Sampling-Phase 1 Laboratory: Quanterra/Lockheed Project Coordinator: R. C. SMith Task Manager: R. E. Peterson Section 2 - SAMPLE INFORMATION Number of Samples: 4 - Qunaterra; 2 - Lockheed ID Numbers: Q - B0G041, B0G042, B0G077, B0G078; L - B0G079, B0G080 **Matrix: Water** Collection Date: 06/27/95 Section 3 - ISSUE **Class: Validation Direction** NCR Number: N/A **Type: Temperature Excursion** Description: Samples were stored for twelve hours in a refrigerator with temperatures of 7-8 degrees Celcius. N/ANCR Validation (Print/Sign) Date Section 4 - DISPOSITION Type: Use As Is Description: With concurrence from R. E. Peterson, task lead, proceed with analyses and document excursion with this SDR. R. C. Smith/ Project Coordinator (Print/Sign)

R. E. Peterson Task Manager (Print/Sign)

N/A

QA (Print/Sign)

Date

Section 5 - INSPECTION (Issue Class: Nonconformance Only)

Inspection Number: Inspection Results:

Inspector (Print/Sign)

Date

END OF PACKAGE

DATA VALIDATION REPORT for 100-HR-3 GROUNDWATER ROUND 9 PHASE 1 Radiochemistry Analysis SDG LK4838-LAS LATA VB403.86

Bechtel Hanford Inc. P.O. Box 969 Richland, Washington

September 13, 1995

Table of Contents

Data Validation Narrative INTRODUCTION ANALYSES REQUESTED DATA QUALITY OBJECTIVES REFERENCES GLOSSARY OF VALIDATION APPLIED QUALIFIERS (RADIOCHEMISTRY)	000002 000002 000002 000004
Qualification Summary Table	•
Data Summary Table	
Sample Results	
Checklist)00015
Laboratory Case Narrative)00028
Chain-of-Custody Information)00031
Supplemental Information)00033
END OF PACKAGE	00036

100-HR-3 GROUNDWATER ROUND 9 PHASE 1 Data Validation Narrative

INTRODUCTION

All samples in Sample Delivery Group (SDG) LK4838-LAS (VB403.86) were validated at level D as defined in the Data Validation Procedures for Radiochemical Analyses (WHC-SD-EN-SPP-001, Rev. 1)

The analyses were performed by Lockheed Analytical Services.

ANALYSES REQUESTED

See Table 1.

DATA QUALITY OBJECTIVES

Precision: Goals for precision were met.

Accuracy: Goals for accuracy were met.

Sample Result Verification: All sample results were supported in the raw data.

Detection Limits: Detection limit goals were met for all sample results as specified

in the RCRA Facility Investigation/Corrective Measures Study Work Plan for the 100-HR-3 Operable Unit, DOE/RL 88-36, Rev.

0.

Completeness: The data package was 100% complete for all requested analyses.

MAJOR DEFICIENCIES

No major deficiencies were identified during data validation which required qualification of data as unusable.

MINOR DEFICIENCIES

No minor deficiencies were identified during data validation which required qualification of data as estimated.

Table 1 Chain-of-Custody Analysis Request

LATA ID #: VB403.86

SDG: LK4838-LAS

	Sa	mple Infor	mation	• •	Analyses Requeste			ed		
SAMPLE	DATE			FIELD QC						
NO.	COLLECTED	MATRIX	SAF	INFO	1	2	3	4	5	6
B0G079	27-Jun-95	WATER	B95-067	Split of B0G041	Х	Х	Х	Х	Х	Х

Method References:

	Analysis	Method
1.	Gross Alpha, Gross Beta	LAL-91-SOP-0060
2.	Strontium-90	LAL-92-SOP-0196
3.	U-235/238	LAL-91-SOP-0108
4.	Tritium .	LAL-91-SOP-0066
5.	Tc-99 .	LAL-91-SOP-0169
6.	Activity Scan	Lab Specific
7.	Rad Screen	Lab Specific

NOTES: (complete documentation of these notes can be found in the Supplemental Information Section of this report)

NOTE 1:

Samples were stored for twelve hours in a refrigerator with temperatures of 7-8 degrees Celsius. See ROD 95-0040. The sample data is unaffected.

NOTE 2:

The Rad Screen prior to offsite shipment was cancelled.

9613428,1608

REFERENCES

WHC 1993, Data Validation Procedures for Radiochemical Analyses, WHC-SD-EN-SPP-001, Rev. 1, Westinghouse Hanford Company, Richland, Washington.

DOE 1992, RCRA Facility Investigation/Corrective Measures Study Work Plan for the 100-HR-3 Operable Unit, DOE/RL 88-36, Rev. 0, Department of Energy-Hanford, Richland, Washington.

GLOSSARY OF VALIDATION APPLIED QUALIFIERS (RADIOCHEMISTRY)

Qualifiers which may be applied by data validators in compliance with the procedures herein are as follows.

- U- Indicates the constituent was analyzed for, but was not detected at a concentration above the Minimum Detectable Activity (MDA). The concentration reported is the sample result corrected for sample aliquot size, dilution factors, and percent solids (in the case of solid matrices) by the laboratory. The associated data should be considered usable for decision making purposes.
- UJ- Indicates the constituent was analyzed for and was not detected at a concentration above the Minimum Detectable Activity (MDA). Due to a quality control deficiency identified during data validation, the result reported may not accurately reflect the sample concentration. The associated data should be considered usable for decision making purposes.
- J- Indicates a constituent was analyzed for and detected. The associated value is estimated due to a quality control deficiency identified during validation. The data should be considered usable for decision making purposes.
- R- Indicates the constituent was analyzed for and detected; however, due to an identified quality control deficiency the data should be considered unusable for decision making purposes.
- UR- Indicates the constituent was analyzed for and not detected; however, due to an identified quality control deficiency the data should be considered unusable for decision making purposes.

9613428,1610

GLOSSARY OF LABORATORY APPLIED QUALIFIERS

Qualifiers which may be applied by the laboratory in compliance with applicable requirements are as follows.

Commonly used laboratory radiochemistry qualifiers:

- U- Indicates the analyte was analyzed for but not detected in the sample.
- J- Indicates the value reported is estimated due to the presence of interference.
- C- Indicates the presence of high TDS in the sample requiring a reduction of the sample size which increased the MDA.

Qualification Summary Table

Qualification Summary Table

Radiochemistry

ANALYTE	TYPE	QUALIFIER	SAMPLES	DQO	• .	REASON		
			AFFECTED		:			
No qualifiers were added by validator.								

Comments:

- 1. Sample was stored for 12 hours in a refrigerator with temperatures of 7-8 degrees Celsius. Sample data is unaffected.
- 2. Sample B0G079 is a split of B0G041. The field split will be evaluated in SDG# W0607-QES, (LATA ID # VB403.91).
- 3. The "U" qualifiers added to the Data Summary Tables and Form 1s are laboratory concentration qualifiers to indicate that the results are <MDA and have not been applied as a result of validation.

Data Summary Table

9613428 RADIOCHEMISTRY DATA SUMMARY TABLE

LATA ID#:	VB403.86	HEIS #:	B0G07	9
	-	Date:	27-Jun-	95
	Matrix: WATER			
Constituent	CAS#	Units	Results	Q
Gross Alpha	ALPHA	pCi/L	1.3	U
Gross Beta	BETA	pCi/L	. 5.1	
Tritium	10028-17-8	. pCi/L	520	
Technetium-99	14133-76-7	pCi/L	5.3	U
Strontium-90	10098-97-2	pCi/L	-0.14	U
Uranium-233/234	U-233/234	pCi/L	1.47	
Uranium-235	15117-96-1	pCi/L	0.45	
Uranium-238	U-238	pCi/L	1.05	

000010

Sample Results (Form I's)

LOCKHEED ANALYTICAL SERVICES

RAD DATA REPORT (ra01)

Bechtel Hanford, Inc. * Richland, WA

Bechtel Hanford Project (Project BECHTEL-HANFORD)

Client Sample ID: BOG079

LAL Sample ID: L4838-8

Date Collected:

27-JUN-95

Date Received: 29-JUN-95

Matrix:

Water

Login Number: L4838

								_
Gross Alpha	19-JUL-95	GR ALP/BETA LAL-0060 24940	1.3	1.4	2.3	C ·	pci/L K	
Gross Beta	19-JUL-95	GR ALP/BETA LAL-0060 24940	5.1	1.7	2.4		pCi/L	
Total radio-strontium	11-JUL-95	SR-90 LAL-0196 24941	-0 .1 4	0.52	0.92		pCi/L W	L
U-233/4	12-JUL-95	U-ISOTOPIC LAL-0108 24942	1.47	0.38	0.17		pCi/L	
U-235	12-JUL-95	U-ISOTOPIC LAL-0108 24942	0.45	0.21	0.11		pCi/L	
U-238	12-JUL-95	U-ISOTOPIC LAL-0108 24942	1.05	0.32	0.17		pCi/L	

19-4-95

LOCKHEED ANALYTICAL SERVICES

RAD DATA REPORT (ra01)

Bechtel Hanford, Inc. * Richland, WA

Bechtel Hanford Project (Project BECHTEL-HANFORD)

Client Sample ID: BOG079

LAL Sample ID: L4838-17

Date Collected:

27-JUN-95

Date Received: 29-JUN-95

Matrix:

Water

Login Number: L4838

Constituent	Analyzed	Batch	Activit	у Еггог	MDA	DataQua	Units
н-3	21-JUL-95	TRITIUM(H3) LAL-0066_24943	520	240	250		pCi/L

000013

LOCKHEED ANALYTICAL SERVICES

RAD DATA REPORT (ra01)

Bechtel Hanford, Inc. * Richland, WA

Bechtel Hanford Project (Project BECHTEL-HANFORD)

Client Sample ID: BOG079

LAL Sample ID: L4838-18

Date Collected:

Date Received: 29-JUN-95

Matrix:

Water

27-JUN-95

Login Number: L4838

Constituent	Analyzed	Batch .	Activit	у Еггог	MDA	DataQual	Units	
Tc-99	19- JUL -95	TC-99 LAL-0169_24944	5.3	8.6	10.		pCi/L	v

Checklist

9613428. LATA RADIOCHEMISTRY DATA VALIDATION CHECKLIST

VALIDATION LEVEL:	Α	В	С	ם	E				
VALIDATION PROCEDURE:		WHC-CM-5-3, Rev.	o X	WHC-SD-EN-SPP-0	01, Rev. 1				
PROJECT:	100-HR-3 ∫ û°	/ 2	SDG:	LK4838-LAS					
VALIDATOR:	A FREIER MAN	LATA NO:	VB403.86	DATE:	30-Aug-95				
REVIEWER:	BJ MORRIS 41.95	LAB:	LAS	~~~	N/A				
SAF NO:	B95-067	QAPP NÓ:	N/A		WHC-SD-C018H- TP-010, R0				
	ANALYSES REQUESTED								
Gross Alpha LAL-91-SOP-0060		LAL-91-SOP-0066	· 	X Technetium-99 LAL-91-SOP-0169					
SAMPLE NO. B0G079	MATRIX WATER	COMMENTS:							
1. DATA PACKAG	E COMPLETENESS	AND CASE NARRA	TIVE		YES NO N/A				
Is technical verificat	ion documentation pr	resent?			X 🗌 🗎				
Is a case narrative p	present?				X				
2. HOLDING TIME	S				YES NO N/A				
Are sample holding	times acceptable?				× 🔲 🔲				
Are samples preserv	ved correctly?				X				
		See HOLDING TIM	E SUMMARY form						
3. INSTRUMENT P	ERFORMANCE ANI	CALIBRATIONS			YES NO N/A				
Were instruments/de	etectors calibrated wi	thin one year of sam	ple analysis?						
Are initial calibration	ns acceptable?								
Are standards NIST	traceable?	•	·		씰 닏 닏				
Are standards accep		e e	· .:						
Comments:				one year of sample a	nalysis,				
however continuing	calibration data is ac	ceptable. Therefore,	no qualifiers are assi	gned.					

DATA VALIDATION CHECKLIST

4. CONTINUING CALIBRATION	YES NO N/A						
Background checked at proper frequency?	X						
Background check acceptable?	×						
Efficiency checked at proper frequency?	×						
Efficiency check acceptable?	× 🗍						
Calibration check standards NIST traceable?	X						
Calibration check standards acceptable?	×						
If NO(s) are checked, see CALIBRATION DATA SUMMARY form							
5. BLANKS	YES NO N/A						
Were method blanks analyzed?	X						
Are the method blanks free of analytes?	X 🔲						
Were method blank results acceptable?	×						
Validation calculation/transcription checks were performed and are acceptable.							
If NO(s) are checked, see BLANK DATA SUMMARY form							
	YES NO N/A						
6. ACCURACY							
Were spike samples analyzed at the proper frequency?							
Are all spike sample recoveries acceptable?							
Were laboratory control standards (LCS) analyzed at the proper frequency?							
Are all LCS recoveries acceptable?							
Was a tracer/chemical carrier added?							
Was the tracer/chemical camer recovery acceptable?							
Are standard sources traceable?							
Are standards acceptable?							
Validation calculation checks were performed and are acceptable.							
If NO(s) are checked, see ACCURACY DATA SUMMARY form							
	YES NO N/A						
7. PRECISION							
Were laboratory duplicates analyzed at the proper frequency?							
Are all duplicate RPD values acceptable?							
Validation calculation checks were performed and are acceptable.							
If NO(s) are checked, see PRECISION DATA SUMMARY form							

40386RAD.XLS, Checklist 8/30/95, 15:20

000017

9613428 LATA RADIOCHEMISTRY DATA VALIDATION CHECKLIST

8. FIELD QC SAMPLES	YES NO	N/A
Were field QC samples (field/trip blanks, duplicates, splits, performance audit) identified?	X	
Are field/trip blank results acceptable? (see Blank Data Summary form)		X
Are field duplicate RPD values acceptable? (see Field QC calculations)		X
Are field split RPD values acceptable? (see Field QC calculations)		X
Are performance audit sample results acceptable?		X
Comments: The following field split was identified: B0G041/B0G079.		-
The split sample results are evaluated in SDG W0607-QES (VB403.91).		
9. REPORTED RESULTS AND DETECTION LIMITS	YES NO	N/A
Are results reported for all requested analyses?	X	
Are all results supported in the raw data?	X	
Are results calculated properly?	X]	
Do MDAs meet the RDLs?	X]	
Validation calculation checks were performed and are acceptable.	X]	
Comments:		
VALIDATION SUMMARY		

For deficiencies (major and minor) and comments, please refer to the Qualification Summary Table.

9615428 1623 RADIOCHEMISTRY DATA VALIDATION CHECKLIST

HOLDING TIME SUMMARY

SDG:	LK4838-LA	NS	VALIDATOR:	A FREIER				DATE:	30-Aug-95	
PROJECT:	100	-HR-3	REVIEWER:	BJ MORRIS			٠	LATA NO.:	VB403.86	
HEIS-SN	MATRIX CODE	ANALYSIS	DATE COLLECTED	PREP DATE	ANALYSIS DATE	PREP HT (days)	Required HT (days)	ANALYSIS HT (days)	Required HT (days)	VAL Q
B0G079	WATER	GrossAlpha	27-Jun-95	N/A	19-Jul-95	N/A	180	22	180	NONE
B0G079	WATER	Gross Beta	27-Jun-95	N/A	19-Jul-95	N/A	180	22	180	NONE
B0G079	WATER	Strontium	27-Jun-95	N/A	11-Jul-95	N/A	180	14	180	NONE
B0G079	WATER	U-233/4	27-Jun-95	N/A	12-Jul-95	N/A	180	15	180	NONE
B0G079	WATER	U-235	27-Jun-95	N/A	12-Jul-95	N/A	180	15	180	NONE
B0G079	WATER	U-238	27-Jun-95	N/A	12-Jul-95	N/A	180	15	180	NONE
B0G079	WATER	Tritium	27-Jun-95	N/A	21-Jul-95	N/A	180	24	180	NONE
B0G079	WATER	Tc-99	27-Jun-95	N/A	19-Jul-95	N/A	180	22	180	NONE

9613428. LATA RADIOCHEMISTRY CALCULATION SPREADSHEET

	MATRIX	SPIKE RECO	VERY (MS)		
SDG: <u>LK4838-LAS</u>		_		Date:	30-Aug-95
LATA No.: <u>VB403.86</u>	· .	-		Validator:	A FREIER
Analyte	Sample ID	Spike Sample Result	Sample Result	Spike Added	%R
Gross Alpha	B0G079	38	1.26	36.60	100%
Gross Beta	B0G079	40.6	5.09	37.80	94%
Tritium	B0G079	3950	524	3600	95%
	,			. ,	

9613428 LATA RADIOCHEMISTRY CALCULATION SPREADSHEET

PERCENT RECOVERY (LCS)

SDG: LK4838-LAS

LATA No.: VB403.86

Date: 30-Aug-95

Analyte	Observed value	True value	%R
Gross Alpha	37.4	39.2	95%
Gross Beta	43.4	42.6	102%
Strontium	53.3	52.0	103%
U-233/34	26.5	28.7	92%
Tritium	1980	2270	87%
Technetium-99	1330	1120	119%

9613428 LOGA RADIOCHEMISTRY CALCULATION SPREADSHEET

RELATIVE PERCENT DIFFERENCE

SDG: LK4838-LAS

Date: 30-Aug-95

LATA No.: VB403.86

Analyte	Sample ID	Original (Sample) concentration	Duplicate concentration	RPD
Gross Alpha	B0G079	1.26	0.755	50.1%
Gross Beta	B0G079	5.09	5.43	6.46%
Strontium	B0G079	-0.139	-0.239	52.9%
U-233/34	B0G079	1.47	1.41	4.17%
Tritium	B0G079	524	588	11.5%
Technetium-99	B0G079	5.27	9.74	59.6%

9613428 1624 TA RADIOCHEMISTRY CALCULATION SPREADSHEET

MINIMUM DETECTABLE ACTIVITY (MDA)

SDG: LK4838-LAS

LATA No.: VB403.86

Date: 30-Aug-95

Analyte	Sample ID	Bkgrnd counts/ min (cpm) or Std Dev of bkgrnd (cpm)	Count time for assoc. sample	Detector Efficiency	Ingrowth corr. factor	Tracer/ Carrier recovery factor	Decay factor	Chemical yield factor	Sample volume (L or g)	MDA pCi/L
Uranium-233/34	B0G079	0.006	480	0,20	1.00	0.99	1.00	1.00	0.20	0.188
Gross Alpha	B0G079	0.05	100	0.12	1.00	1.00	1.00	1.00	0.22	2.26
Gross Beta	B0G079	1.03	100`	0.42	1.00	1.00	1.00	1.00	0.22	2.44
Strontium	B0G079	1.00	150	0.44	1.07	0.83	1.00	1.00	0.50	0.92
Technetium-99	B0G079	2.55	30	0.83	1.00	0.78	1.00	1.00	0.10	10.10
Tritium	B0G079	0.87	20	0.20	1.00	1.00	1.00	1.00	0.01	249

9613428. LATA RADIOCHEMISTRY CALCULATION SPREADSHEET

RESULTS CALCULATION GROSS ALPHA/BETA AND TRITIUM

SDG: LK4838-LAS

Date: 30-Aug-95

LATA No.: VB403.86

Analyte	Gross Counts per minute	Background Counts per minute	Activity of alpha fraction in beta channel	Detector Efficiency	Sample volume (L or g)	Result pCi/L
Gross Alpha	.0.12	0.05	1.00	0.12	0.22	1.3
Gross Beta	2.08	1.03	1.00	0.42	0.22	5.2
Tritium	3.19	0.87	1.00	0.20	0.01	533

9613428. 1627 PATA RADIOCHEMISTRY CALCULATION SPREADSHEET

		RESULTS	CALCULAT	ION TOTAL S	TRONTIUM		
					•	, a	
SDG: LK4838-LAS	·		· -		•		Date: <u>30-Aug-95</u>
LATA No.: <u>VB403.86</u>							Validator: A FREIER
	•					, ,	
Gı	ross		. "	•			
Co		Background Counts per minute	Ingrowth correction Factor	Detector Efficiency	Carrier recovery factor	Strontium decay factor	Sample volume Result (L or g) pCi/L

9613428. LATA RADIOCHEMISTRY CALCULATION SPREADSHEET

RESULTS CALCULATION TECHNETIUM-99

SDG: LK4838-LAS

Date: 30-Aug-95

LATA No.: VB403.86

÷	Gross					
	Counts	Background		Carrier	Sample	
	per	Counts per	Detector	recovery	volume	Result
Analyte	minute	minute	Efficiency	factor	(L or g)	pCi/L
Technetium-99	3.30	2.55	0.83	0.78	0.10	5.2

9613428. LATA RADIOCHEMISTRY CALCULATION SPREADSHEET

RESULTS CALCULATION ALPHA SPEC ISOTOPES

SDG: LK4838-LAS

Date: 30-Aug-95

Result pCi/L 1.47

LATA No.: VB403,86

	Gross		• •		
•	Counts	. Background Counts per	Detector	Tracer recovery	Sample volume
Analyte	minute	minute	Efficiency	factor	(L or g)
U-233/234	. 0.14	0.01	0.20	0.99	0.20

Laboratory Case Narrative

Lockheed Analytical Services

Log-in No.: L4838

Quotation No.: Q400000-B

SAF: B95-067

Document File No.: 0520596/0525596

BHC Document File No.:242

SDG No.: LK4838

CASE NARRATIVE RADIOCHEMICAL ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument calibration, initial and continuing calibration verification, quench monitoring standards, instrument background analysis, method blanks, yield tracer, laboratory control samples, matrix spike samples, duplicate samples.

Holding Time Requirements

All holding times were met.

Chemical recoveries and MDAs can be found on the preparation and calculation spreadsheets, respectively, of the attached raw data for each method.

Analytical Method Gross Alpha Beta

The gross alpha beta analysis was performed using Standard Operating Procedure (SOP), LAL-91-SOP-0060. All samples were analyzed in workgroup #24940. No problems were encountered during preparation or analysis. All QC criteria were met and no reanalyses were performed.

Analytical Method Strontium-90

The strontium-90 analysis was performed using SOP, LAL-91-SOP-0196. All samples were analyzed in workgroup #24941. No problems were encountered during preparation or analysis. All QC criteria were met and no reanalyses were performed.

Analytical Method Technetium-99

The technetium-99 analysis was performed using SOP, LAL-91-SOP-0169. All samples were analyzed in workgroup #24944. No problems were encountered during preparation or analysis. All QC criteria were met and no reanalyses were performed, with the following exception: The low LCS tracer chemical yield was elevating the LCS recovery out of limits; therefore, the average batch chemical yield was used, preventing an out-of-limits LCS.

Analytical Method Tritium

The tritium analysis was performed using SOP, LAL-91-SOP-0066. All samples were analyzed in workgroup #24943. No problems were encountered during preparation or analysis. All QC criteria were met and no reanalyses were performed.

000029 010

Lockheed Analytical Services

Log-in No.: L4838

Quotation No.: Q400000-B

SAF: B95-067

Document File No.: 0520596/0525596

BHC Document File No.:242

SDG No.: LK4838

Analytical Method Uranium Isotopic

The uranium isotopic analysis was performed using SOP, LAL-91-SOP-0108. All samples were analyzed in workgroup #24942. No problems were encountered during preparation or analysis. All QC criteria were met and no reanalyses were performed.

Yvonne M. Jacoby Prepared By

<u>July 26, 1995</u> Date

A 1 95

Chain-of-Custody Information

D L 4 - I	ITauCand	T
Bechter	Hanford.	IIIC.

Possible Sample Hazards/Remarks

Special Handling and/or Storage

Maintain samplings between 2°C and 6°C.

SAMPLE ANALYSIS

100-HR-3 Groundwater Sampling, Round 9, Phase 1

Collector

Project Designation

Ice Chest No.

Shipped To Lockheed

CHAIN OF CUSTODY/SAMPI

IN OF CUSTO	DY/SAM	IPLE AN	NALYSI	S REQU	JEST	4	83	ata Turna		7 7 75
Company Contact					Telephone				Normal	
R. E. Peterson					(509) 372-9	638			Normal	
Sampling Location 100 H					SAF No. B95-067					
Field Logbook No. F / / C Offsite Property No.	18				Method of S Federal Exp	press				
Offsite Property No. W95-0-(1204-	3B			Bill of Ladi えつ	ng/Air Bill N ク 463	3.29	<u>?</u>		
Preservation	HNO ₃	Cool 4°C	H ₂ SO ₄	Cool 4°C	+1	H ₂ SO ₄	HNO₃	Cool 4°C	HCI	Cooi 4°C
Type of Container	G	G	P/G	P/G	P	P/G	P/G	G	P/G	P - 1
No. of Container(s)	. 1	1	1	1.	11	1	, 9 .	1	4	1
Volume	500mL	500mL	500mL	250mL	1L	1L	ıL	500mL	1L	20mL *
	ICP Metals (Unfilter- ed)	Anions (IC) - F, Cl, SO ₄ , NO ₂ , NO ₃ , PO ₄	NO ₂ - NO ₃	Turbidity	Sulfide	Ammonia	Gross Alpha, Gross Beta, Sr-90, U-235/238	Tritium	Tc-99	Activity Scan
Time Sampled						in the second	L	-	11	
0.937	Å	Υ	4	75	Α,	1	, X	X	6	X
								ļ ·		
	<u>.</u>									
							,			
Date/Tin Date/Tin Date/Tin		tion only. T).0; and turbi tractor ackno		Matrix* S = Soil SE = Sed SO = Soil SL = Shuc W = Wal O = Oil A = Air	iment id Ige Ier			
Date/Tim	ie	The :	tempe 10	atule	Was C	out d	for T	for.	DS = Dru DL = Dru T = Tiss	m Solids m Liquids sue
Date/Tin	ne .	12 ho		betwee	n 196	and 8°C,	, tal T	10 %	WI = Wir L = Liqu V = Veg	uid . biu

				ed)			1		-		1		}
Sample No.	Matrix*	Date Sampled	Time Sampled		1 3 A 19 (4 A 1			<u>' </u>	The state of	<u> </u>		1	
B0G079	Le.	6.37.55	0937	Å	Y	γ.	k	4	1	. X	K	Ç	X
			• .										
·													
									··	,	Ţ.		
CHAIN OF POSSESSION Relinquished By AG COO Relinquished By H-Unay K. I Capp Relinquished By	Date/Time 6-27-75 Date/Time 6/25/45 Date/Time	Received By 124 C Received By Received By			180.1 is bei the 48-hour	NaOH ysis for pho ng requested holding time	sphate, nitrat I for informa e will not be	tion only. T met.	he ERC Cor	0.0; and turbi	wledges that	Matrix* S = Soil SE = Sedi SO = Solic SL = Shud W = Wat O = Oil A = Air DS = Drur	i ge er n Solids
Relinquished By Relinquished By	Date/Time	Received By Received By	Date/Ti		lhe i la ho sam	urs, i pies.	bernee	n 7°C	ad 8°C	for T	40 52	DL = Drut T = Tiss WI = Wip L = Liqu V = Vege X = Othe	id etation
LABORATORY Receives	AW		Title	~shod.>	sposed By				4.2	Oate/Time	0900		· .
DISPOSITION DISPOSITION	al Method	}						· ·		Jaco Fillic		.	

Supplemental Information

Environmental Restoration Contractor

ERC Team

Interoffice Memorandum

Job No. 22192

Written Response Required: N

CCN: N/A OU: 100-EIR-3 TSD: N/A

ERA: N/A

TO:

W. S. Thompson

N3-06

DATE: June 13, 1995

COPIES:

R. L. Biggerstaff

H4-91

FROM:

S. K. De Mers

Radiological Controls

N3-06/376-2764

SUBJECT: 1995 Round 9 sampling for 100-HR-3

There is no need to perform total activities prior to offsite shipment to NRC licensed labs of samples taken from the attached list of wells.

All except one of the wells listed in the attachment were reviewed for radiological content based on the previous 4 years of sampling data. No well listed has a β activity in excess of 100,000 pCi/l (<.1 uCi/sample based on a 1 liter sample size) nor any α activity in excess of 10,000 pCi/l (<.01 uCi/l based on a 1 liter sample). All wells show activities < 2,000 pCi/gm (< 2 nCi/gm D.O.T. limit). The highest activity in recent samples is 773 pCi/l β and 50 pCi/l α .

The remaining wells are in locations that do not provide a credible path whereby they could become contaminated at the above listed levels.

Radiological monitoring during sampling will only be required if the wells are located in radiological areas or if the wells themselves are labeled with radiological stickers.

Monitoring requirements for down hole work such as pump removal will be determined based on the history of each well on a case by case basis.

skd

000034

(XO) G. 546

Control #: 95-0040 Sample Disposition Record **Revision #:** Date Initiated: 07/05/95 Section 1 - BACKGROUND SAF #: B95-067 OU: 100-HR-3 Project ID: 100-HR-3 LFI Task ID: 6 Sampling Event: 100-HR-3 Groundwater Sampling-Phase 1 Laboratory: Quanterra/Lockheed Project Coordinator: R. C. SMith Task Manager: R. E. Peterson Section 2 - SAMPLE INFORMATION Number of Samples: 4 - Qunaterra; 2 - Lockheed ID Numbers: Q - B0G041, B0G042, B0G077, B0G078; L - B0G079, B0G080 Matrix: Water Collection Date: 06/27/95 Section 3 - ISSUE Class: Validation Direction NCR Number: N/A **Type: Temperature Excursion** Description: Samples were stored for twelve hours in a refrigerator with temperatures of 7-8 degrees Celcius. NCR Validation (Print/Sign) Date Section 4 - DISPOSITION Type: Use As Is Description: With concurrence from R. E. Peterson, task lead, proceed with analyses and document excursion with this SDR. R. C. Smith/ Project Coordinator (Print/Sign) R. E. Peterson Task Manager (Print/Sign) N/A QA (Print/Sign) Date Section 5 - INSPECTION (Issue Class: Nonconformance Only) **Inspection Number: Inspection Results:** 014

Inspector (Print/Sign)

000035

Date

END OF PACKAGE